
Interactive System Productivity Facility (ISPF)

Dialog Developer’s Guide and Reference

z/OS Version 1 Release 9.0

SC34-4821-06

���

Interactive System Productivity Facility (ISPF)

Dialog Developer’s Guide and Reference

z/OS Version 1 Release 9.0

SC34-4821-06

���

Note

Before using this document, read the general information under “Notices” on page 419.

Seventh Edition (September 2007)

This edition applies to ISPF for Version 1 Release 9.0 of the licensed program z/OS (program number 5694-A01)

and to all subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. A form for comments appears at the back of this publication. If the form has been

removed and you have ISPF-specific comments, address your comments to:

IBM Corporation

Reader Comments

DTX/E269

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Internet: comments@us.ibm.com

If you would like a reply, be sure to include your name and your address, telephone number, e-mail address, or

FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

The ISPF development team maintains a site on the World Wide Web. The URL for the site is:

http://www.ibm.com/software/awdtools/ispf/

© Copyright International Business Machines Corporation 1980, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

http://www.ibm.com/software/awdtools/ispf/

Contents

Figures vii

Preface ix

About this document ix

Who should use this document ix

What is in this document? ix

Notation conventions x

Using LookAt to look up message explanations . . xi

Using IBM Health Checker for z/OS xi

Summary of changes xiii

Product function changes for z/OS V1R9.0 ISPF xiii

ISPF product changes xiii

ISPF Dialog Manager component changes . . . xiii

ISPF PDF component changes xiv

ISPF SCLM component changes xv

ISPF Client/Server component changes xv

Migration considerations xv

Changes to this document for z/OS V1R9.0 ISPF . . xv

What’s in the z/OS V1R9.0 ISPF

library? xvii

Chapter 1. Introduction to ISPF 1

What is ISPF? 1

What is a dialog? 1

Functions 2

Variables 2

Command tables 2

Panel definitions 3

Message definitions 3

File-tailoring skeletons 3

Tables 3

What does a dialog do? 4

Developing a dialog 4

How dialog elements interact 5

Dialog variables 7

Chapter 2. Controlling ISPF sessions . . 9

Dialog control and data flow 9

Processing a dialog 10

Starting a dialog 10

Syntax for issuing the ISPSTART command . . . 10

Using the ISPSTART command 18

Invoking a dialog from a selection panel . . . 18

Invoking a dialog from a master application

menu 19

Controlling ISPF sessions 20

Using the SHRPROF system command 20

SHRPROF command syntax and parameter

descriptions 20

What the SELECT service does 22

Invoking the SELECT service 23

Terminating a dialog 24

Return Codes from Terminating Dialogs 24

An example using the ZISPFRC return code . . 26

ISPF test and trace modes 27

Test modes 27

ISPF trace modes 28

Invoking authorized programs 28

Invoking TSO commands 28

Compiled REXX requirements 29

CLIST requirements 29

Attention exits 30

Using APL2 31

Invoking APL2 31

Executing APL2 functions 33

Invoking ISPF dialog services in the APL2

environment 34

APL2 workspace as the ISPF function pool . . . 34

Interface between ISPF and APL2 35

Subtasking support 35

ESTAE restrictions 36

ISPF services in batch mode 36

Command processors in the TSO batch

environment 36

Batch display facility for background panel

processing 37

ISPF graphical user interface in batch mode . . 40

Chapter 3. Introduction to writing

dialogs 43

Using the display services 43

Example: creating a display with TBDISPL . . . 44

Processing selected rows 46

Adding table rows dynamically during table

display scrolling 47

Example: dynamic table expansion 51

Using the variable services 61

Searching variable pools 62

SELECT service and variable access 62

Function pools and dialog functions 63

Command procedures, program functions, and

function pools 63

Use a variable service to create or delete defined

variables 65

Creating implicit variables 65

Naming defined and implicit variables 65

Sharing variables among dialogs 66

Saving variables across ISPF sessions 66

Removing variables from the shared or profile

pool 67

Read-only profile pool extension variables . . . 67

Variables owned by ISPF 68

Variable formats 69

System variables communicate between dialogs

and ISPF 69

Using VDEFINE, VDELETE, VRESET, VCOPY,

VMASK, and VREPLACE 70

© Copyright IBM Corp. 1980, 2007 iii

||
||
|
||

Using the VGET, VPUT, and VERASE services . . 70

Summary of variable services 71

Using the table services 71

Where tables reside 71

Accessing data 72

Services that affect an entire table 72

Services that affect table rows 73

Protecting table resources 73

Example: create and update a simple table . . . 74

Determining table size 75

Example: function using the DISPLAY, TBGET,

and TBADD services 75

Specifying dbcs search argument format for table

services 83

Using the file-tailoring services 83

Skeleton files 84

Example of using file-tailoring services 85

Using the PDF services 86

BROWSE, EDIT, and EDREC 86

BRIF, EDIF, and EDIREC 87

Library access services 87

Using the miscellaneous services 88

CONTROL service 88

GDDM services (GRINIT, GRTERM, and

GRERROR) 88

GETMSG service 89

LIBDEF service 89

LIST service 89

LOG Service 89

PQUERY Service 89

Chapter 4. Common User Access

(CUA) guidelines 91

Using the dialog tag language to define dialog

elements 91

Keylists 91

Action bars and pull-downs 92

Pop-up windows 92

Movable pop-ups 93

WINDOW command 93

Manual movement 94

Pop-up movement considerations 95

Field-level help 95

Extended help 95

Keys help 95

Reference phrase help 96

START service 97

Chapter 5. Graphical User Interface

(GUI) guidelines 99

How to display an application in GUI mode . . . 99

Other considerations 101

Some general GUI restrictions 103

Chapter 6. Panel definition statement

guide 105

Introduction to panel definition sections 106

Guidelines for formatting panels 107

Requirements for specifying message and

command line placement 108

Factors that affect a panel’s size 112

Syntax rules and restrictions for panel definition 113

Using blanks and comments 114

Formatting items in lists 114

Using variables and literal expressions in text

fields 115

Validating DBCS strings 116

Special requirements for defining certain panels 116

Defining menus 117

Defining table display panels 133

Formatting panels that contain dynamic areas 145

Formatting panels that contain a graphic area 150

Using DBCS-related variables in panels 152

Using preprocessed panels 152

Restrictions for using ISPPREP 154

Using ISPPREP with the SELECT service . . . 154

Handling error conditions and return codes . . 156

Chapter 7. Panel definition statement

reference 159

Defining panel sections 159

Defining the action bar choice section 159

Defining the action bar choice initialization

section 165

Defining the action bar choice processing

section 166

Defining the area section 166

Defining the attribute section 172

Defining the body section 209

Defining the CCSID section 214

Defining the END section 215

Defining the FIELD section 215

Defining the HELP section 222

Defining the initialization section 223

Defining the LIST section 223

Defining the model section 224

Defining the panel section 225

Defining the point-and-shoot section 228

Defining the processing section 232

Defining the reinitialization section 233

Formatting panel definition statements 235

The assignment statement 235

The ELSE statement 242

EXIT and GOTO statements 244

The IF statement 246

The PANEXIT statement 250

The REFRESH statement 257

The *REXX statement 258

The TOG statement 266

The VEDIT statement 267

The VER statement 268

The VGET statement 280

The VPUT statement 282

The VSYM statement 283

Using ISPF control variables 283

.ALARM 285

.ATTR and .ATTRCHAR 286

.AUTOSEL 289

.CSRPOS 289

.CSRROW 290

.CURSOR 290

iv z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

 | |

.HELP 292

.HHELP 292

.MSG 292

.NRET 293

.PFKEY 294

.RESP 294

.TRAIL 295

.ZVARS 295

Chapter 8. ISPF help and tutorial

panels 297

Processing help 298

Help requests from an application panel . . . 298

Help available from a help panel 300

Ending help 300

ISPF default keylist for help panels 300

The ISPF tutorial panels 301

Chapter 9. Defining messages 307

How to define a message 308

Message display variations 312

Messages tagged with CCSID 313

Modeless message pop-ups 314

Message pop-up text formatting 314

English rules for message text formatting . . . 315

Asian rules for message text formatting . . . 315

Substitutable parameters in messages 316

Syntax rules for consistent message definition . . 316

DBCS-related variables in messages 317

Chapter 10. Defining file-tailoring

skeletons 319

Control characters 319

Considerations for data records 320

Control characters for data records 321

Considerations for control statements 322

Control statements 322

Built-in functions 334

Sample skeleton file 345

DBCS-related variables in file skeletons 345

Chapter 11. Extended code page

support 347

Translating common characters 347

Z variables 347

Panels tagged with CCSID 348

Messages tagged with CCSID 348

GETMSG service 348

TRANS service 348

ISPccsid translate load modules 348

ISPccsid translate load module generation

macro 349

ISPCCSID macro 349

Description of parameters 349

ISPccsid translate load module definition

examples 350

KANA and NOKANA keywords 350

Character translation 350

Supported CCSIDs 351

Base code pages for terminals 353

Adding translate tables for extended code page

support 354

Base CCSIDs 355

Extended code page translate tables provided by

ISPF 356

Example of user-modifiable ISPF translate table 357

Appendix A. Character translations for

APL, TEXT, and Katakana 361

Appendix B. ISPTTDEF specify

translate table set 365

Appendix C. Diagnostic Tools and

Information 367

ISPF debug tools 367

Panel trace command (ISPDPTRC) 367

Trace format 370

File tailoring trace command (ISPFTTRC) 374

Trace format 377

Diagnostic information 380

Using the ENVIRON system command 380

ENVIRON command syntax and parameter

descriptions 381

Abend panels provide diagnostic information 386

ISPF statistics entry in a PDS directory 389

Common problems using ISPF 389

Messages 389

Unexpected output 391

Abend codes and information 391

Terminal I/O error codes 394

Register linkage conventions 395

Obtaining message IDs 395

Appendix D. Dialog variables 397

PDF non-modifiable variables 403

Appendix E. System variables 405

Configuration utility 406

Time and date 406

General 407

ZSCRNAME examples 410

Terminal and function keys 411

Scrolling 413

PRINTG command 413

Table display service 414

LIST service 414

LOG and LIST data sets 414

Dialog error 414

Tutorial panels 415

Selection panels 415

DTL panels or panels containing a)PANEL section 415

Appendix F. Accessibility 417

Using assistive technologies 417

Keyboard navigation of the user interface 417

z/OS information 417

Contents v

Notices 419

Programming Interface Information 420

Trademarks 421

Index 423

vi z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Figures

 1. Using ISPF 5

 2. Typical dialog organization starting with a

menu 6

 3. Typical dialog starting with a function 7

 4. Control and data flow 9

 5. Application dialog running under ISPF 10

 6. Sample selection panel 19

 7. ISPF master application menu (ISP@MSTR) 19

 8. Multi-logon profile sharing settings (ISPISSA) 20

 9. SELECT service used to invoke and process a

dialog 23

10. Sample background ISPF job 26

11. Sample dialog using system variable ZISPFRC 27

12. MVS batch job 37

13. Invoking client/server in batch mode 41

14. TBDISPL panel definition 44

15. TBDISPL display 45

16. Panel definition dynamic table expansion 52

17. PL/I dialog function example program 53

18. Initial display for dynamic table expansion

example 58

19. Second display for dynamic table expansion

example 59

20. Third display for dynamic table expansion

example 60

21. Fourth display for dynamic table expansion

example 61

22. Control and data flow in a dialog 63

23. CLIST to create a read-only extension table 68

24. Panel definition SER 77

25. Panel display SER 77

26. Panel display SER with an ISPF-provided

message superimposed on line 1 78

27. Message EMPX21 79

28. Panel display SER—short form of message

EMPX210 superimpose line 1 80

29. Panel display SER—long form of message

EMPX210 superimposed on line 3 80

30. Panel definition DATA 81

31. Panel display DATA 82

32. Sample skeleton file 85

33. Example panel displaying three pop-up

windows 93

34. Reference phrase help example 97

35. Sample panel definition format 107

36. CUA panel definition 110

37. Sample CUA panel (SAMPAN on ISPKLUP) 112

38. Example of a menu (ISP@MSTR) 117

39. Master application menu definition 122

40. Master application menu DTL source 123

41. ISPF primary option menu definition 128

42. ISPF primary option menu DTL source 129

43. Parts of a TBDISPL display 134

44. Table display panel definition 143

45. Table as displayed 143

46. Table display panel definition with several

model lines 144

47. Table as displayed with several model lines 145

48. Panel definition illustrating SCROLL and

EXTEND 147

49. Dynamic area with character attributes 150

50. Panel for specifying preprocessed panel data

sets (ISPPREPA) 153

51. Action bar section example 165

52. Invalid scrollable area definition 170

53. Valid scrollable area definition 170

54. Scrollable area screen display (part 1 of 2) 172

55. Scrollable area screen display (part 2 of 2) 172

56. Panel definition illustrating a graphic area 179

57. Panel definition with graphic area 179

58. Definition of panel graphic area with

overlapping text field 180

59. Example of CKBOX keyword 182

60. Attribute section in a panel definition 202

61. Group box definition 207

62. Sample panel definition 214

63. Sample panel—when displayed 214

64. Sample point-and-shoot definition 232

65. Panel processing 234

66. Sample panel definition with TRANS and

TRUNC 239

67. Sample panel definition with IF and ELSE

statement 244

68. Standard parameter list format 254

69. Panel REXX example 262

70. Sample member VALUSER to invoke panel

REXX 265

71. TOG statement example 267

72. VEDIT example 268

73. Sample panel definition with verification 280

74. Sample panel definition with control variables 285

75. Example of Z variable place-holders 296

76. Help panel flow 299

77. Sample tutorial hierarchy 303

78. Sample tutorial panel definition (panel B) 304

79. Sample tutorial panel definition (panel F2) 305

80. Sample messages 308

81. Example syntax for defining messages 308

82. Sample skeleton file 345

83. Basic ISP00111 translate module 350

84. ISP00222 translate module with two direct

CCSID entries 350

85. Translation to CCSID 00500 from CCSID

XXXXX 354

86. Translation to CCSID XXXXX from CCSID

00500 355

87. Internal character representations for APL

keyboards 362

88. Internal character representations for text

keyboards 363

89. Sample Panel Trace header 370

© Copyright IBM Corp. 1980, 2007 vii

||

90. Sample DISPLAY trace 373

91. Sample PROCESS trace 374

92. Sample file tailoring trace header 377

93. Sample file tailoring process trace 380

94. ENVIRON Settings Panel (ISPENVA) 381

95. Error Recovery Panel (ISPPRS1) 387

96. Additional Diagnostic Information panel

(ISPPRS3) 388

viii z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Preface

This document describes how to use the ISPF Dialog Manager elements from

programs or command procedures.

About this document

The z/OS ISPF Dialog Developer’s Guide and Reference is a guide for learning and

using the Dialog Manager component of the ISPF product. It provides:

v An introduction to ISPF basics

v Information on running ISPF sessions

v Guidelines for:

– Writing panel definitions

– Defining messages

– Defining file-tailoring skeletons
v Tables of dialog variables and system variables.

Who should use this document

This document is for programmers who develop ISPF application dialogs, and for

system analysts and system programmers.

Users should be familiar with the MVS operating system and are expected to know

at least one of the ISPF-supported programming or command procedure languages:

Assembler, PL/I, COBOL, VS FORTRAN, C, APL2®, Pascal, CLIST, and REXX.

What is in this document?

Chapter 1, “Introduction to ISPF,” describes what ISPF is and what it does for you.

Chapter 2, “Controlling ISPF sessions,” describes how to start and stop an ISPF

session and how to use many of the ISPF facilities.

Chapter 3, “Introduction to writing dialogs,” describes how to write dialogs using

the ISPF services for display, variable, table, file tailoring, and PDF.

Chapter 4, “Common User Access (CUA) guidelines,” describes how ISPF supports

the Common User Access® (CUA®) guidelines.

Chapter 5, “Graphical User Interface (GUI) guidelines,” provides information for

dialog developers who need to write or adapt dialogs to run in GUI mode on a

workstation.

Chapter 6, “Panel definition statement guide,” provides guide-type information for

sections, panel definition statements, and control variables. It explains how to

create panels using the panel definition statements.

Chapter 7, “Panel definition statement reference,” provides reference information

on how to create ISPF panels using Dialog Tag Language (DTL) and the ISPF DTL

conversion utility, DTL and panel definition statements, or panel definition

statements.

© Copyright IBM Corp. 1980, 2007 ix

Chapter 8, “ISPF help and tutorial panels,” describes online help and tutorial

panels that a developer can include to provide online information for an

application user.

Chapter 9, “Defining messages,” describes how to create and change ISPF messages

using an existing message definition or the DTL tags MSG and MSGMBR.

Chapter 10, “Defining file-tailoring skeletons,” describes ISPF skeleton definitions

and how to create or change skeletons.

Chapter 11, “Extended code page support,” describes how extended code page

support allows panels, messages, and variable application data to be displayed

correctly on terminals using any of the supported code pages.

Appendix A, “Character translations for APL, TEXT, and Katakana,” contains the

character translation tables for APL, TEXT, and Katakana.

Appendix B, “ISPTTDEF specify translate table set,” describes a program,

ISPTTDEF, that can be used to specify the set of terminal translation tables.

Appendix C, “Diagnostic Tools and Information,” contains information to help you

diagnose ISPF problems.

Appendix D, “Dialog variables,” describes the ISPF dialog function pool variables

that are both read from and written to by ISPF library access services.

Appendix E, “System variables,” describes system variables with type and pool

information.

Notation conventions

This document notation conventions:

v Uppercase commands and their uppercase parameters to show required entry

v Lowercase characters to show parameters that can be specified by the user

v Brackets [] to show optional parameters (required parameters do not have

brackets)

v An OR (|) symbol to show two or more parameters you must select from

v Stacked parameters to show two or more parameters you can select from

Note: You can choose one or none. If you choose none, ISPF uses the

underscored parameter.

v Braces {} with stacked parameters to show that you must select one. For

example:

{KEYWORD1(variable) [OPTPAR1(variable)]}

{KEYWORD2(variable)}

{KEYWORD3(variable) [OPTPAR2(variable)]}

{KEYWORD4(variable) [OPTPAR3(variable)]}

indicates that you must select either KEYWORD1, KEYWORD2, KEYWORD3, or

KEYWORD4.

v Underscores to show defaults

v An ellipsis (...) to show that the parameter can be repeated, specifying additional

items of the same category.

x z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the

IBM® messages you encounter, as well as for some system abends and codes.

Using LookAt to find information is faster than a conventional search because in

most cases LookAt goes directly to the message explanation.

You can use LookAt from these locations to find IBM message explanations for

z/OS® elements and features, z/VM®, z/VSE™, and Clusters for AIX® and Linux™:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site at www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/.

v Your z/OS TSO/E host system. You can install code on your z/OS systems to

access IBM message explanations using LookAt from a TSO/E command line

(for example: TSO/E prompt, ISPF, or z/OS UNIX® System Services).

v Your Microsoft® Windows® workstation. You can install LookAt directly from

the z/OS Collection (SK3T-4269) or the z/OS and Software Products DVD Collection

(SK3T-4271) and use it from the resulting Windows graphical user interface

(GUI). The command prompt (also known as the DOS > command line) version

can still be used from the directory in which you install the Windows version of

LookAt.

v Your wireless handheld device. You can use the LookAt Mobile Edition from

www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html with a

handheld device that has wireless access and an Internet browser (for example:

Internet Explorer for Pocket PCs, Blazer or Eudora for Palm OS, or Opera for

Linux handheld devices).

You can obtain code to install LookAt on your host system or Microsoft Windows

workstation from:

v A CD in the z/OS Collection (SK3T-4269).

v The z/OS and Software Products DVD Collection (SK3T-4271).

v The LookAt Web site (click Download and then select the platform, release,

collection, and location that suit your needs). More information is available in

the LOOKAT.ME files available during the download process.

Using IBM Health Checker for z/OS

IBM Health Checker for z/OS is a z/OS component that installations can use to

gather information about their system environment and system parameters to help

identify potential configuration problems before they impact availability or cause

outages. Individual products, z/OS components, or ISV software can provide

checks that take advantage of the IBM Health Checker for z/OS framework. This

book might refer to checks or messages associated with this component.

For additional information about checks and about IBM Health Checker for z/OS,

see IBM Health Checker for z/OS: User’s Guide.

SDSF also provides functions to simplify the management of checks. See z/OS

SDSF Operation and Customization for additional information.

Preface xi

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookatm.html

xii z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Summary of changes

This summary lists changes and enhancements for z/OS V1R9.0 ISPF. It has two

parts:

Product function changes

Describes the functional changes to z/OS V1R9.0 ISPF, listed by each ISPF

component. This part appears in most of the ISPF documents.

Changes to this document

Lists the changes and enhancements for z/OS V1R9.0 ISPF which affect

this document, including cross-references to the new or changed sections.

Product function changes for z/OS V1R9.0 ISPF

z/OS V1R9.0 ISPF contains the following changes and enhancements:

v ISPF product changes

v ISPF Dialog Manager component changes (including DTL changes)

v ISPF PDF component changes

v ISPF SCLM component changes

v ISPF Client/Server component changes

For details of migration actions relating to ISPF and other z/OS elements, see z/OS

Migration.

ISPF product changes

Support for the ISPF plug-in for Managed System Infrastructure (msys) for Setup

has been withdrawn in z/OS V1.8.

Changes to the ZENVIR variable. Characters 1 through 8 contain the product name

and sequence number, in the format ISPF x.y, where x.y indicates the version

number and release. Note that the x.y value is not the same as the operating

system version. For example, a value of ″ISPF 5.9″ represents ISPF for z/OS

Version 1 Release 9.0.

The ZOS390RL variable contains the level of the z/OS release running on your

system.

The ZISPFOS system variable contains the level of ISPF that is running as part of

the operating system release on your system. This might or might not match

ZOS390RL. For this release of ISPF, the variable contains ISPF for z/OS 01.09.00.

ISPF Dialog Manager component changes

The DM component of ISPF includes the following new functions and

enhancements:

v Users are able to share ISPF profiles across different systems in the same sysplex.

v File tailoring and panel REXX support is enhanced to allow REXX to change the

lengths of the values of variables passed from ISPF.

v Lowercase characters can now be specified in the Action field for Command

Table entries, allowing lowercase characters to be passed in parameters to

commands.

© Copyright IBM Corp. 1980, 2007 xiii

v The ISPSTART command supports a new NESTMACS parameter which, when

specified, causes all REXX and CLIST edit macros to run as nested commands.

v ISPF Configuration Utility changes:

– New keywords to manage Profile Sharing:

 PROFILE_APPPROF_CONFLICT

 PROFILE_BATCH_CONFLICT

 PROFILE_EDIT_CONFLICT

 PROFILE_ENQLOCK_PROMPT

 PROFILE_ENQLOCK_RETRY_COUNT

 PROFILE_ENQLOCK_WAIT

 PROFILE_ISPPROF_CONFLICT

 PROFILE_OTHER_CONFLICT

 PROFILE_REFLIST_CONFLICT

 PROFILE_SHARING

 PROFILE_SYSPROF_CONFLICT

 RESET_PROFILE_SHARING_SETTINGS
– New keyword RESET_LIST_LRECL_AND_RECFM to permit the ISPF list

data set lrecl and recfm profile values to be reset.
v Dialog Tag Language (DTL) changes:

– There are no changes to Dialog Tag Language (DTL) for this release.

ISPF PDF component changes

The ISPF PDF component contains the following new functions and enhancements:

v The ISPF Primary Option Menu (ISR@PRIM) has been modified to always

include option 12 (″z/OS system programmer applications″) and option 13

(″z/OS user applications″). Previously, by default, these two options were not

shown on the ISPF Primary Option Menu.

v The ISPF Edit, Browse, and View functions have been enhanced to support the

processing of z/OS UNIX files.

v The following enhancements have been made to the z/OS UNIX Directory List:

– The ISPF Edit and Browse functions, rather than OEDIT and OBROWSE, are

now used to edit and browse a z/OS UNIX file.

– A View function is now available to display the data in a z/OS UNIX file.

– Eligible users can switch to super-user (UID 0) mode.
v The ISPF Editor is enhanced to support the display and modification of ASCII

data.

v The Edit UNDO command is enhanced to allow the reversal of changes made

before a previous SAVE command.

v System symbols can be specified within data set names entered on ISPF panels.

v The ISPF data set list (DSLIST) utility provides a new option to display the total

tracks used by all the data sets in the list.

v The ″IGWFAMS failed″ message displayed in the ISPF data set list (DSLIST)

utility is changed to ″Error msg logged″ and the FAMS RC and RSN code

values, and any FAMS formatted messages, are written to the ISPF log.

v The ISPF Table Utility now provides users with the option of processing a

temporary copy of a table when the specified table is currently in use.

v The ISRDDN utility is enhanced to allow a user to display a disassembly of a

load module while browsing the load module in storage.

v The VIIF service is enhanced to support a dialog-supplied write routine which

allows the dialog to handle the write processing for CREATE and REPLACE

primary commands.

xiv z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

ISPF SCLM component changes

The ISPF SCLM component contains the following new functions and

enhancements:

v The new NOPROM function allows you to leave behind (not promote) a

specified member, such as a copybook, during an SCLM promote function. For

example, you can use the NOPROM function when you need to promote a fix to

a DB2 program but you do not want to promote the DCLGEN for a DB2 table

that has been changed in the development system but not in the test system.

You can use the NOPROM function to specify that the DCLGEN for the table in

the DEV group is left behind and that, when the program is promoted from

DEV to TEST, it is rebuilt with the DCLGEN in the TEST group.

v From z/OS 1.8 onward, it is no longer necessary to reassemble project

definitions if there is a change to the SCLM macros.

v The SCLM sample project has been enhanced to include sample COBOL

programs as well as PL/I and Assembler programs. Also, the latest Enterprise

translators are used and a Fault Analyzer sample is provided.

v A new API is provided that allows access to the build and promote functions to

be managed as SAF resources. In addition, the API allows for authorized build

and promote functions to be run under a surrogate TSO userid. The new API

can be called from BUILD and COPY translators.

v The GETBLDMP service in enhanced to provide a new ISPF variable that

identifies the group where the build map was found.

v The new CCEXITS service allows users to invoke the CCVFY and VERCC exits

without invoking Edit.

ISPF Client/Server component changes

There are no new functions or enhancements for the Client/Server component of

ISPF.

Migration considerations

Customers with a modified version of ISRPXASM (Edit HILITE keyword table)

migrating from z/OS 1.6 or earlier, must check the IBM-supplied sample for

changes. Two new address constants have been added.

Changes to this document for z/OS V1R9.0 ISPF

Note

This book contains terminology, maintenance, and editorial changes. Technical

changes or additions to the text and illustrations are indicated by a vertical

line to the left of the change.

Increase to panel statement limit

For changes to this document relating to the increase to the panel

statement limit, see:

v “Syntax rules and restrictions for panel definition” on page 113

v “Defining the area section” on page 166

v “The *REXX statement” on page 258

Shared profiles

For changes to this document relating to shared profiles, see:

v ″SHRPROF″ on page 16

v “Controlling ISPF sessions” on page 20

Summary of changes xv

Nested REXX/CLIST edit macro support

For changes to this document relating to nested REXX/CLIST edit macro

support, see:

v ″NESTMACS″ on page 17

System symbolics in data set names

For changes to this document relating to system symbolics in data set

names, see:

v “The TRUNC built-in function” on page 236

v “The VSYM built-in function” on page 242

v “The IF statement” on page 246

v “IF statement with VSYM built-in function” on page 249

v “The VER statement” on page 268

v “The VSYM statement” on page 283

v ″&VSYM()″ on page 343

Variable REXX variables

For changes to this document relating to variable REXX variables, see:

v “Parameters passed from ISPF to the panel user exit routine” on page

254

v “ISPREXPX syntax” on page 256

xvi z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

What’s in the z/OS V1R9.0 ISPF library?

You can order the ISPF books using the numbers provided below.

 Title Order Number

z/OS ISPF Dialog Developer’s Guide and Reference SC34-4821–06

z/OS ISPF Dialog Tag Language Guide and Reference SC34-4824–06

z/OS ISPF Edit and Edit Macros SC34-4820–06

z/OS ISPF Messages and Codes SC34-4815–06

z/OS ISPF Planning and Customizing GC34-4814–06

z/OS ISPF Reference Summary SC34-4816–06

z/OS ISPF Software Configuration and Library Manager Guide and Reference SC34-4817–07

z/OS ISPF Services Guide SC34-4819–06

z/OS ISPF User’s Guide Vol I SC34-4822–06

z/OS ISPF User’s Guide Vol II SC34-4823–06

© Copyright IBM Corp. 1980, 2007 xvii

xviii z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 1. Introduction to ISPF

This topic describes ISPF at an introductory level. It explains what ISPF is and

what it does for you.

What is ISPF?

Consider the Interactive System Productivity Facility (ISPF) program product an

extension of the MVS Time Sharing Option (TSO) host system on which it runs.

ISPF services complement those of the host system to provide interactive

processing. ISPF is similar to a control program or access method in that it

provides services to dialogs (applications) during their execution. The types of

services provided by ISPF are:

v Display services

v File-tailoring services

v Variable services

v Table services

v Miscellaneous services

v Dialog test facility, including:

– Setting breakpoints

– Tracing usage of dialog services and dialog variables

– Browsing trace output in the ISPF log data set

– Examining and updating ISPF tables

– Interactively invoking most dialog services.

A dialog receives requests and data from a user at a terminal. The dialog responds

by using ISPF services to obtain information from, or enter information into, a

computer system.

What is a dialog?

To understand the dialog interface, you must first understand what a dialog is. A

dialog is the interaction between a person and a computer. It helps a person who is

using an interactive display terminal to exchange information with a computer.

The user starts an interactive application through an interface that the system

provides. The dialog with the user begins with the computer displaying a panel

and asking for user interaction. It ends when the task for which the interactions

were initiated is completed.

A dialog developer creates the parts of a dialog, called dialog elements. Each

dialog application is made up of a command procedure or program, together with

dialog elements that allow an orderly interaction between the computer and the

application user.

The elements that make up a dialog application are:

v Functions

v Variables

v Command tables

v Panel definitions

v Message definitions

v File-tailoring skeletons

v Tables

© Copyright IBM Corp. 1980, 2007 1

A dialog does not necessarily include all types of elements. For example, certain

kinds of applications do not use tables and skeletons.

Functions

A function is a command procedure or a program that performs processing

requested by the user. It can invoke ISPF dialog services to display panels and

messages, build and maintain tables, generate output data sets, and control

operational modes.

A function can be coded in a command procedure language using CLIST or REXX

or in a programming language, such as PL/I, COBOL, FORTRAN, APL2, Pascal, or

C.

You can use more than one language in a dialog application. For example, within a

single application containing three functions, each function could be written using

a different language, such as PL/I, COBOL, or FORTRAN. One or more of the

functions can be written using a command procedure language instead of a

programming language.

Notes:

1. ISPF functions written in PL/I should not be linked with the PL/I multitasking

libraries.

2. ISPF functions written in FORTRAN should be linked in FORTRAN link mode.

That is, include the VLNKMLIB library ahead of the VFORTLIB library in the

SYSLIB concatenation. See the VS FORTRAN Programming Guide for additional

information.

3. ISPF functions written in the C language should be linked with the C$START

load module. For more information, see the C Compiler User’s Guide.

4. A function coded in a programming language can be designed for cross-system

use, to be processed by equivalent levels of ISPF running under VM and z/OS.

Such a function would need to use equivalent ISPF services available on both

VM and z/OS.

Variables

ISPF services use variables to communicate information among the various

elements of a dialog application. ISPF provides a group of services for variable

management. Variables can vary in length from zero to 32K bytes and are stored in

variable pools according to how they are to be used. A set of variables whose

names begin with the character Z are system variables. Z variables are reserved for

ISPF system-related uses.

Command tables

A system command table (ISPCMDS) is distributed with ISPF in the table input

library. An application can provide an application command table by including a

table named xxxxCMDS in its table input library, where xxxx is a 1- to 4-character

application ID. In addition, you can specify up to three User command tables and

up to three Site command tables. The application IDs for the User and Site

command tables are specified in the ISPF Configuration table. You can also specify

if the Site command tables are to be searched before or after the system command

table.

You can define an application command table either by using the Dialog Tag

Language (DTL) and ISPF conversion utility, or by using ISPF option 3.9.

2 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

When a user enters a command, the dialog manager searches the application

command table, if any, and then the system command table. If it finds the

command, action is taken immediately. If it does not find the command in the

application or system tables, the command is passed to the dialog, unaltered, in

the command field. The dialog then takes appropriate action.

Note: You can use the TSO ISPCMDTB command to convert existing command

tables to DTL. To use ISPCMDTB, ensure the command table is in your table

concatenation (ISPTLIB), then type TSO ISPCMDTB applid (where applid is the

application id of the command table). This will begin an edit session

containing the DTL version of the command table. Use the editor CREATE

or REPLACE command to save the table to your DTL source data set.

Panel definitions

A panel definition is a programmed description of the panel. It defines both the

content and format of a panel.

Most panels prompt the user for input. The user’s response can identify which

path is to be taken through the dialog, as on a selection panel. The response can be

interpreted as data, as on a data-entry panel.

Panels can invoke REXX statements, enabling the dialog developer to use the

powers of the REXX language to perform operations such as arithmetic, formatting

of dialog variables, and verification, transformation, and translation of data.

Message definitions

Message definitions specify the format and text of messages to users. A message

can confirm that a user-requested action is in progress or completed, or it can

report an error in the user’s input. Messages can be superimposed on the display

to which they apply, directed to a hardcopy log, or both.

File-tailoring skeletons

A file-tailoring skeleton, or simply a skeleton, is a generalized representation of

sequential data. It can be customized during dialog execution to produce an output

data set. After a skeleton is processed, the output data set can be used to drive

other processes. File skeletons are frequently used to produce job data sets for

batch execution.

Tables

Tables are two-dimensional arrays that contain data and are created by dialog

processing. They can be created as a temporary data repository, or they can be

retained across sessions. A retained table can also be shared among several

applications. The type and amount of data stored in a table depends on the nature

of the application.

Tables are generated and updated during dialog execution. The organization of

each table is specified to ISPF using ISPF table services.

Chapter 1. Introduction to ISPF 3

What does a dialog do?

You can use ISPF to simplify the programming that provides interactive

application operations. Operations performed during dialog execution include:

v Identifying to the user choices of available processing routines

v Invoking a requested routine, based on the user’s choice

v Prompting the user to enter data

v Reading the data into a work area

v Checking the data to verify that it is appropriate for the application

If the data is not appropriate for the application:

– Identifying the error to the user

– Prompting the user to enter new data and verifying that data

If the entered data is in the proper form:

– Displaying any information requested by the user

– Processing or storing the user’s data, then advising the user of its disposition
v Creating sequential output data sets or reports

v Providing online messages, help, and tutorial displays to help users understand

application processing.

Developing a dialog

A developer, using an editor such as the PDF editor in Option 2 of ISPF, develops

a dialog by creating its various elements at a terminal and storing them in

libraries. You can use any available editor when creating dialog elements.

However, in addition to an editor, ISPF provides special facilities to aid dialog

development. Examples of these facilities are:

v A VIEW facility for displaying source data or output listings

v Utilities to simplify data handling

v Programming-language processing facilities

v Edit models for messages, file-tailoring skeletons, panels, and DTL source

v Library access services for accessing both ISPF libraries and other data sets.

Figure 1 on page 5 shows a developer using ISPF to create and test dialog

elements. As shown in the figure, panel definitions, message definitions, and

file-tailoring skeletons are created before running the dialog. These dialog elements

are saved in libraries. The developer stores the program (after compilation) or

command procedure in an appropriate system program library. During dialog

testing, tables of data, log entries, and file-tailoring output data sets can be created

by dialog processing. ISPF creates the log data set the first time the user performs

some action that results in a log message, such as saving edited data or submitting

a job to the batch machine. ISPF creates the list data set the first time a user

requests a print function or runs a dialog that issues a LIST service request.

When the developer completes the functions, panel definitions, and any other

dialog elements required by the application being developed, the dialog is ready to

be processed under ISPF.

4 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

How dialog elements interact

A dialog can be organized in a variety of ways to suit the requirements of the

application and the needs of the application user.

A typical dialog organization, shown in Figure 2 on page 6, starts with display of

the highest menu, called the primary option menu. User options selected from the

primary option menu can result in the call of a function or the display of a

lower-level menu. Each lower-level menu can also cause functions to receive

control or still other menus to be displayed.

Eventually, a function receives control. The function can use any of the dialog

services provided by ISPF. Typically, the function can continue the interaction with

the user by means of the DISPLAY service. The function might also display

data-entry panels to prompt the user for information. When the function ends, the

menu from which it was invoked is redisplayed.

Figure 1. Using ISPF

Chapter 1. Introduction to ISPF 5

Figure 3 on page 7 shows another type of dialog organization in which a dialog

function receives control first, before the display of a menu. The function performs

application-dependent initialization and displays data-entry panels to prompt the

user for basic information. It then starts the selection process by using the SELECT

service to display the primary option menu for the application.

Figure 3 also shows how a dialog function can invoke another function without

displaying a menu. It uses the SELECT service to do this, which provides a

convenient way to pass control from a program-coded function to a

command-coded function, or vice versa. The invoked function then starts a

lower-level menu process, again by using the SELECT service.

Figure 2. Typical dialog organization starting with a menu

6 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

To relate your application design to CUA design models and principles, refer to the

IBM Common User Access Guidelines. It is recommended that you use DTL to design

CUA-based panels. See the z/OS ISPF Dialog Tag Language Guide and Reference for

more information.

Dialog variables

ISPF uses dialog variables to communicate data between the dialog management

services and the dialog elements. A dialog variable’s value is a character string that

can vary in length from 0 to 32K bytes. Some services restrict the length of dialog

variable data.

Dialog variables are referred to symbolically. The name is composed of 1 to 8

characters (6 for FORTRAN). Alphanumeric characters A-Z, 0-9, #, $, or @ can be

used in the name, but the first character cannot be numeric. APL variable names

cannot contain #, $, or @.

Dialog variables can be used with panels, messages, and skeleton definitions, as

well as within dialog functions. For example, a dialog variable name can be

defined in a panel definition, and then referred to in a function of the same dialog.

Or, the variable can be defined in a function, then used in a panel definition to

initialize information on a display panel, then later used to store data entered by

the user on the display panel.

Figure 3. Typical dialog starting with a function

Chapter 1. Introduction to ISPF 7

For functions coded in a programming language other than APL2, the internal

program variables that are to be used as dialog variables can be identified to ISPF

and accessed using the ISPF variable services. The use of STEM or COMPOUND

variables within a REXX procedure is not supported by ISPF. For a function coded

as CLIST or REXX command procedures or as an APL2 procedure, variables used

in the procedure are automatically treated as dialog variables. In this case, no

special action is required to define them to ISPF.

8 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 2. Controlling ISPF sessions

This topic is intended to help you understand how to control ISPF sessions. It

describes how to start and stop an ISPF session and how to use many of the ISPF

facilities.

Dialog control and data flow

Figure 4 illustrates dialog control and data flow. At the start of an ISPF session,

you can use the ISPSTART command either to request a selection panel from

which to choose the first task or to call a dialog function. The figure also illustrates

how the ISPF services interact with the various dialog elements.

Figure 4. Control and data flow

© Copyright IBM Corp. 1980, 2007 9

Processing a dialog

Figure 5 shows a dialog being processed under ISPF. The figure shows that ISPF

dialog services are available only to command procedures or programs running

under ISPF. During dialog processing, the dialog requests specific ISPF services

and identifies the panel and message definitions, skeletons, and tables to use. The

figure also shows that entries in the log and list data sets, as well as the

file-tailoring output data sets, can be generated during dialog processing.

 Dialog processing begins either with the display of a selection panel or with a

function. In either case, you can invoke a dialog from a terminal running under

control of TSO.

Starting a dialog

You can use the ISPF, PDF, or ISPSTART command, with the CMD, PGM, or

PANEL keyword, to start ISPF or other dialogs. ISPF is a command procedure that

runs under TSO. For example, it can be run from a terminal running under TSO,

or from a CLIST or REXX command procedure.

Before a dialog starts, data sets referred to by that dialog must be defined to ISPF.

Syntax for issuing the ISPSTART command

You invoke ISPF by using the ISPSTART command. ISPSTART command

parameters specify the first menu to be displayed or the first function to receive

control before the display of a menu.

Figure 5. Application dialog running under ISPF

10 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

If no parameters are specified, the ISPSTART command displays the default

primary panel specified in the DEFAULT_PRIMARY_PANEL keyword in the ISPF

configuration table. This keyword is typically set to ISP@MSTR.

The PDF and ISPF commands are aliases for ISPSTART that can be used to start

ISPF. If you enter ISPF or PDF with no parameters, the command ISPSTART

PANEL(panel) NEWAPPL(ISR) is run, where panel is determined by these rules:

v If the default primary panel is ISP@MSTR or is not set, panel=ISR@PRIM

v If the default primary panel is set to any other panel,

panel=DEFAULT_PRIMARY_PANEL

Parameters

All the parameters described here apply to the PDF and ISPF commands as well as

ISPSTART. For more information about the GUI parameters, see Chapter 5,

“Graphical User Interface (GUI) guidelines,” on page 99. For more information

about running in GUI mode, refer to the topic on the ISPF user interface in the

z/OS ISPF User’s Guide Vol I.

 ISPSTART

{PANEL(panel-name) [OPT(option)][ADDPOP]}

{CMD(command parm1 parm2) [LANG(APL|CREX)]}

{PGM(program-name) [PARM(parameters)]}

{WSCMD(workstation-command)

 [MODAL|MODELESS]

 [WSDIR(dir)]

 [MAX|MIN]

 [VIS|INVIS]}

{WSCMDV(var_name)

 [MODAL|MODELESS]

 [WSDIR(dir)]

 [MAX|MIN]

 [VIS|INVIS]}

[GUI(LU:address:tpname | IP:address:port |,FI:) |,NOGUIDSP)] [TITLE(title)]

[GUISCRW(screen-width)]

[GUISCRD(screen-depth)]

[FRAME(STD|FIX|DLG)]

[CODEPAGE(codepage)] [CHARSET(character_set)]

[BKGRND(STD|DLG)]

[NEWAPPL[(application-id)]]

[SHRPROF|EXCLPROF]

[SCRNAME(screen-name)]

[TEST|TESTX|TRACE|TRACEX]

[NOLOGO|LOGO(logo-panel-name)]

[BATSCRW(screen-width)]

[BATSCRD(screen-depth)]

[BDISPMAX(max-number-of-displays)]

[BREDIMAX(max-number-of-redisplays)]

[BDBCS]

[DANISH|ENGLISH|GERMAN|JAPANESE|PORTUGUE|SPANISH|KOREAN|

 FRENCH|ITALIAN|CHINESET|CHINESES|SGERMAN|UPPERENG]

[NESTMACS]

where:

panel-name

Specifies the name of the first menu (that is, the primary option menu) to be

displayed.

option

Specifies an initial option, which should be a valid option on the first menu.

Chapter 2. Controlling ISPF sessions 11

|

|

This causes direct entry to that option without displaying the primary option

menu. (The primary option menu is processed in nondisplay mode, as though

the user had entered the option.) If you specify an option that is not valid, the

primary option menu displays an appropriate error message.

ADDPOP

Specifies that the panel displayed from a SELECT service appears in a pop-up

window. An explicit REMPOP is performed when the SELECT PANEL has

ended.

command

Specifies a command procedure (CLIST or REXX), an APL2 command, or a

TSO command processor that is to be invoked as the first dialog function. For

more information about invoking APL2 dialogs, refer to the z/OS ISPF Services

Guide.

 CLIST or REXX command parameters can be included within the parentheses.

For example, the call format would be:

 ISPSTART CMD(MYCLIST parm1 parm2 ...)

These parameters are passed to the command procedure. For information

about specifying CLIST parameters, see z/OS TSO/E CLISTs. For information

about specifying REXX parameters, see z/OS TSO/E REXX User’s Guide.

 You can type a percent sign (%) preceding the CLIST or REXX procedure name

to:

v Improve performance

v Prevent ISPF from entering line-display mode when the procedure is started.

Note: When starting a CLIST or REXX procedure or a program through the

SELECT service, a MODE(LINE|FSCR) parameter is available for

specifying either line mode or full-screen mode. If you do not specify

the mode parameter or do not use the % prefix, ISPF enters

line-display mode.

v Ensure that the command procedure is invoked if ISPF has access to a

program function that has the same name as the procedure. If you use the

percent sign prefix, ISPF searches only for a procedure with the specified

name. However, without the percent sign prefix, ISPF searches first for a

program, then for a CLIST or REXX procedure.

On extended data stream terminals, using the percent sign causes the keyboard

to remain in a locked condition. To avoid this condition, the CLIST or REXX

procedure can issue output line I/O before issuing a READ.

LANG(APL|CREX)

Specifies special language invocations. LANG(APL) specifies to start the

command specified by the CMD keyword, and to start an APL2 environment.

LANG(CREX) specifies that the command specified by the CMD keyword is a

REXX exec that has been compiled and link-edited into a LOAD module and

that a CLIST/REXX function pool is to be used. LANG(CREX) is optional if the

compiled REXX has been link-edited to include any of the stubs EAGSTCE,

EAGSTCPP, or EAGSTMP.

program-name

Specifies the name of a program that is to be invoked as the first dialog

function. In PL/I, it must be a MAIN procedure. This parameter must specify

the name of a load module that is accessible by use of the LINK macro.

12 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

However, if the program dialog consists of multiple tasks and if any of the

subtasks use ISPF services, the CMD keyword, not the PGM keyword, must be

used. Dialog developers should avoid using prefixes ISP and ISR, the ISPF

component codes, in naming dialog functions. Special linkage conventions,

intended only for internal ISPF use, are used to invoke programs named

ISPxxxxx and ISRxxxxx.

parameters

Specifies input parameters to be passed to the program. The program should

not attempt to modify these parameters.

 The parameters within the parentheses are passed as a single character string,

preceded by a half-word containing the length of the character string, in

binary. (The length value does not include itself.) This convention is the same

as that for passing parameters by use of the PARM= keyword on a JCL EXEC

statement.

 Parameters on the ISPSTART command to be passed to a PL/I program are

coded in the standard way:

XXX: PROC (PARM) OPTIONS(MAIN);

 DCL PARM CHAR (nnn) VAR;

If the value of the PARM field is to be used as an ISPF dialog variable, it must

be assigned to a fixed character string because the VDEFINE service cannot

handle varying length PL/I strings. In PL/I the first character of the PARM

field must be a slash (/), as PL/I assumes that any value before the slash is a

runtime option.

workstation-command

Specifies a fully qualified workstation program including any parameters. To

issue a command that is not a program (.exe, .com, .bat) DOS allows it to be

prefaced with COMMAND. For example:

SELECT WSCMD(COMMAND /C DIR C:)

MODAL

The MODAL parameter invokes the workstation command modally. It waits

until the workstation command has completed and then returns to ISPF.

MODELESS

The MODELESS parameter invokes the command modelessly. It is only valid

when running in GUI mode. It is the default. It does not wait until the

workstation command has completed. It always returns a return code of zero if

the command was started, even if the command does not exist at the

workstation.

WSDIR(dir)

The WSDIR parameter specifies the variable name containing the workstation

current working directory. This directory is the directory from which the

workstation command should be invoked.

MAX

The MAX parameter attempts to start the workstation command in a

maximized window. The workstation command may override this request.

MAX and MIN are mutually exclusive.

MIN

The MIN parameter attempts to start the workstation command in a

minimized window. The workstation command may override this request.

MAX and MIN are mutually exclusive.

Chapter 2. Controlling ISPF sessions 13

VIS

The VIS parameter attempts to start the workstation command as a visible

window. The workstation command may override this request. This is the

default. VIS and INVIS are mutually exclusive.

INVIS

The INVIS parameter attempts to start the workstation command in an

invisible (hidden) window. The workstation command may override this

request. VIS and INVIS are mutually exclusive.

var_name

Specifies a variable name that contains the text string of a command and its

parameters. Use this when the command path or parameters, or both, contain

embedded blanks, quotation marks, or special characters that might not parse

properly with the WSCMD service.

LU:address:tpname

Specifies the workstation’s Advanced Program-to-Program Communication

(APPC) network name.

Note: The variable ZGUI will be set to the workstation address (in character

format) if ISPSTART is issued with the GUI parameter; ZGUI will be set

to blank if ISPSTART is issued without the GUI parameter.

IP:address:port

Specifies the workstation’s TCP/IP hardware-level IP address: a fully qualified

machine name.

Notes:

1. The variable ZGUI will be set to the workstation address (in character

format) if ISPSTART is issued with the GUI parameter; ZGUI will be set to

blank if ISPSTART is issued without the GUI parameter.

2. If address is set to an asterisk (*) the value of the system variable ZIPADDR

is used. ZIPADDR contains the TCP/IP address of the currently connected

TN3270 workstation.

FI: Specifies that you want to search a file allocated to DD ISPDTPRF for the

user’s network protocol and workstation address to be used when initiating a

workstation connection or GUI display. For more information, refer to the

information about workstation connections in the Settings topic of the z/OS

ISPF User’s Guide Vol II.

NOGUIDSP

Specifies that you want to make a connection to the workstation, but DO NOT

want ISPF to display in GUI mode.

Note: This parameter is only valid if you have specified an LU, IP, or FI

parameter. In other words, you can have any of these situations:

v you specify LU:address:tpname, IP:address:port, or FI: without the

NOGUIDSP parameter

v or you specify LU:address:tpname, NOGUIDSP

v or you specify IP:address:port, NOGUIDSP

v or you specify FI:, NOGUIDSP

TITLE(title)

Specifies the text displayed in the title bar unless a dialog has assigned a

nonblank value to ZWINTTL or ZAPPTTL. The default value for the title bar is

14 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

the user ID. This value has a maximum length of 255 characters and will be

truncated without notice to the user at display time if it does not fit on the

panel.

GUISCRW(screen-width)

Allows you to specify a screen width different than that of the emulator or real

device from which you enter the ISPSTART command. If you do not specify

GUISCRD, the depth will be that of the emulator or real device.

 If GUISCRW is different than the emulator or real device, and GUI

initialization fails, ISPF will not initialize. Dialogs started with dimensions

other than those of the emulator or real device that use the GRINIT service

will not display GDDM® screens.

Note: This parameter is usually only used with the GUI parameter. If you do

specify a value for this parameter without using the GUI parameter,

ISPF ignores it. If you specify a value that is not valid for this

parameter, ISPF might return an error condition.

GUISCRD(screen-depth)

Allows you to specify a screen depth different than that of the emulator or real

device from which you enter the ISPSTART command. If you do not specify

GUISCRW, the width will be that of the emulator or real device.

 If GUISCRD is different than the emulator or real device and GUI initialization

fails, ISPF will not initialize. Dialogs started with dimensions other than those

of the emulator or real device that use the GRINIT service will not display

GDDM screens.

Note: This parameter is usually only used with the GUI parameter. If you do

specify a value for this parameter without using the GUI parameter,

ISPF ignores it. If you specify a value that is not valid for this

parameter, ISPF might return an error condition.

CODEPAGE(codepage) CHARSET(character_set)

 When running in GUI mode or connecting to the workstation, these values are

used as the host code page and character set in translating data from the host

to the workstation, regardless of the values returned from the terminal query

response.

 When running in 3270 mode, if your terminal or emulator does not support

code pages, these values are used as the host code page and character set.

Otherwise, these values are ignored.

FRAME(STD|FIX|DLG)

Specifies that the first window frame displayed will be a standard (STD), fixed

(FIX), or dialog (DLG) window frame, where:

Standard A GUI window frame that can be resized and has max/min

buttons. This is the default value.

Fixed A GUI window frame that has max/min buttons but cannot be

resized.

Dialog A GUI window frame that cannot be resized and does not have

max/min buttons.

Notes:

1. Pop-up panels are displayed in dialog frames by default.

Chapter 2. Controlling ISPF sessions 15

2. This parameter is usually only used with the GUI parameter. If you do

specify a value for this parameter without using the GUI parameter, ISPF

ignores it. If you specify a value that is not valid for this parameter, ISPF

might return an error condition.

BKGRND(STD|DLG)

Specifies that the first window frame displayed will be a standard (STD) or

dialog (DLG) background color. These colors are defined by the workstation.

The default is DLG.

Note: This parameter is usually only used with the GUI parameter. If you do

specify a value for this parameter without using the GUI parameter,

ISPF ignores it. If you specify a value that is not valid for this

parameter, ISPF might return an error condition.

NEWAPPL(application-id)

Specifies a 1- to 4-character code that identifies the application that is being

invoked. The code is to be prefixed to the user and edit profile names or to the

command table associated with the application, as follows:

User Profile - xxxxPROF

Edit Profile - xxxxEDIT

Command Table - xxxxCMDS

where xxxx is the application-id. If the application-id is omitted, or if the

NEWAPPL keyword is omitted, the application-id defaults to ISP.

SHRPROF

Specifies that ISPF is to enable the multi-logon profile sharing support. The

parameter is optional.

EXCLPROF

Specifies that ISPF is to disable the multi-logon profile sharing support. The

parameter is optional

SCRNAME(screen-name)

Specifies a screen name to be used with the SWAP command and the ISPF task

list. The name can be from 2 to 8 characters in length, must satisfy the rules for

a member name, but cannot be LIST, PREV, or NEXT.

TEST

Specifies that ISPF is to be operated in TEST mode, described under “ISPF test

and trace modes” on page 27.

TESTX

Specifies that ISPF is to be operated in extended TEST mode, described under

“ISPF test and trace modes” on page 27.

TRACE

Specifies that ISPF is to be operated in TRACE mode, described under “ISPF

trace modes” on page 28.

TRACEX

Specifies that ISPF is to be operated in extended TRACE mode, described

under “ISPF trace modes” on page 28.

LOGO(logo-panel-name)

Specifies that ISPF displays the named panel before invoking the specified

dialog object. Subsequent SELECT service requests that identify a LOGO panel

will not result in the indicated panel being displayed. This includes a repeat of

the first SELECT as a result of a split-screen request or a logical screen restart

following a severe dialog error.

16 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

|
|
|

|
|
|

|
|

Applications can choose to display their own LOGO panel directly. These

applications can determine whether the user specified the NOLOGO keyword

on ISPSTART by retrieving the ISPF system variable ZLOGO. Applications that

choose to display their own LOGO panel are responsible for controlling that

display operation during split-screen operations and logical-screen restart

situations.

NOLOGO

Specifies that ISPF is to bypass the display of the message pop-up window

containing the product title and copyright statement.

screen-width

For batch mode, specifies screen width in character positions. The default value

is 80. This parameter is ignored when not running in batch mode.

 All screen sizes from 24 x 80 to 62 x 160 are valid.

screen-depth

For batch mode, specifies screen depth in lines. The default value is 32. This

parameter is ignored when not running in batch mode.

max-number-of-displays

For batch mode, specifies the maximum number of displays that can occur

during a session. This number includes the total of all SELECT PANEL calls,

plus all DISPLAY and TBDISPL calls (with or without panel name). This

number does not include redisplays related to the .MSG control variable. The

largest number that can be specified is 999999999. The batch default value is

100. This parameter is ignored when not running in batch mode.

max-number-of-redisplays

For batch mode, specifies the maximum number of redisplays allowed for a

.MSG-redisplay loop. The largest number that can be specified is 255. The

batch default value is 2. This parameter is ignored when not running in batch

mode.

BDBCS

For batch mode, specifies that Double-Byte Character Set (DBCS) terminal

support is required. This parameter is ignored when not running in batch

mode.

DANISH, ENGLISH, GERMAN, JAPANESE, PORTUGUE, SPANISH, KOREAN,

FRENCH, ITALIAN, CHINESET, CHINESES, SGERMAN, UPPERENG

Specifies the national language that is to override the default language for this

session. The JAPANESE keyword specifies that the KANJI character set is to be

used. The CHINESET keyword stands for Traditional Chinese, CHINESES

stands for Simplified Chinese, and SGERMAN stands for Swiss-German. The

UPPERENG keyword specifies that the uppercase English character set is to be

used. For information about establishing the default session language, refer to

z/OS ISPF Planning and Customizing.

Notes:

1. Attempting to run a dialog under a session language other than that for

which it was intended may produce unexpected results.

2. When the Korean, French, Italian, Traditional Chinese, Simplified Chinese,

Spanish, Brazilian-Portuguese, or Danish session language is specified, its

respective literal module is used. However, the ISPF product panels and

messages are displayed in English.

NESTMACS

Specifies that all REXX and CLIST edit macros invoked during the ISPF session

Chapter 2. Controlling ISPF sessions 17

|
|

are to run as nested commands, allowing output from these macros to be

trapped using either the REXX OUTTRAP function or the CLIST

&SYSOUTTRAP control variable.

Using the ISPSTART command

ISPSTART command parameters specify the first menu to be displayed or the first

function to receive control. For example, this command invokes ISPF and specifies

that dialog processing is to begin by displaying a selection panel named ABC,

which must be stored in the panel library:

ISPSTART PANEL(ABC)

The next example invokes ISPF and specifies that dialog processing is to begin

with a CLIST command procedure function named DEF:

ISPSTART CMD(%DEF)

The final example invokes ISPF and specifies that dialog processing is to begin

with a program function named GHI:

ISPSTART PGM(GHI)

Note: If you specify the CMD (command) or PANEL (panel) keyword more than

once on an ISPSTART command line, ISPF uses the last value specified. For

example:

ISPSTART PANEL(PANELA) PANEL(PANELX)

ISPF interprets this command as:

 ISPSTART PANEL(PANELX)

The ISPSTART command is typically entered during logon or from a command

procedure. For example, suppose you begin an application from a terminal by

invoking a command procedure named ABC. Procedure ABC allocates the libraries

for the application, and then issues an ISPSTART command to begin ISPF

processing. The ABC procedure cannot use ISPF dialog services, because it does

not run under ISPF.

ISPF is a command processor that can be attached by another command processor

as a subtask. You should always specify SZERO=NO in the MVS ATTACH macro,

as ISPF does when it attaches a subtask, to ensure that at ISPF termination the

storage that was acquired by ISPF will be released. For more information on the

ATTACH macro, refer to z/OS MVS Programming: Assembler Services Reference

ABE-HSP. For more information on using MVS macros, refer to z/OS MVS

Programming: Assembler Services Guide.

Invoking a dialog from a selection panel

Figure 6 on page 19 shows a selection panel on which the user has selected option

3. When the user presses Enter, option 3, the INVENTORY application, is given

control.

18 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

|
|
|

Invoking a dialog from a master application menu

If your installation provides an ISPF master application menu, you can invoke a

dialog from that menu. A master application menu is one from which any of the

installation’s applications can be invoked. It generally is displayed at the beginning

of each ISPF session. Figure 7 is an illustration of the sample master application

menu that is included with ISPF.

 You usually invoke the master menu by using the ISPSTART command with no

operands. ISPSTART can be issued automatically as part of a user’s logon

procedure or from a CLIST or REXX command procedure.

 ------------------------------- BUILDING 661 ----------------------------

 SELECT OPTION ===> 3_

 1 PAYROLL - Add, update, or delete employee records

 2 MAILING - Add, delete, or change address of employee

 3 INVENTORY - Status of stock

 4 SCHEDULE - Building maintenance

 ENTER END COMMAND TO TERMINATE.

Figure 6. Sample selection panel

 ISPF Master Application Menu

 1 Sample 1 Sample application 1 Userid . : LSACKV

 2 . (Description for option 2) Time . . : 11:12

 3 . (Description for option 3) Terminal : 3278

 4 . (Description for option 4) Pf keys : 24

 5 . (Description for option 5) Screen . : 1

 X Exit Terminate ISPF using list/log defaults Language : ENGLISH

 Appl ID : ISP

 Release : ISPF 5.6

 Enter END command to terminate application

 5694-A01 (C) COPYRIGHT IBM CORP 1982, 2003

┌──┐

│ Licensed Materials - Property of IBM │

│ 5637-A01 (C) Copyright IBM Corp. 1980, 2004. │

│ All rights reserved. │

│ US Government Users Restricted Rights - │

│ Use, duplication or disclosure restricted │

│ by GSA ADP Schedule Contract with IBM Corp. │

└──┘

 Option ===>

 F1=Help F2=Split F3=Exit F9=Swap F10=Actions F12=Cancel

Figure 7. ISPF master application menu (ISP@MSTR)

Controlling ISPF sessions

Chapter 2. Controlling ISPF sessions 19

Controlling ISPF sessions

This topic describes how you can control ISPF sessions with the SHRPROF system

command.

Using the SHRPROF system command

The SHRPROF command allows you to modify settings for shared ISPF profiles.

You can display a panel (Figure 8) for selecting command options by entering the

SHRPROF command with no parameters, or by selecting the Shared Profile

settings... choice from the Environ pull-down on the ISPF Settings panel. This

panel includes the current values of the SHRPROF command parameters. You can

change these values by entering new values directly on the panel.

 You can issue the SHRPROF command at any time during an ISPF session.

SHRPROF command syntax and parameter descriptions

The general syntax for the SHRPROF command is:

 Log/List Function keys Colors Environ Workstation Identifier Help

┌─────────────────────────────── ISPF Settings ───────────────────────────────┐

e ISPISSA Multi-Logon Profile Sharing Settings e

e Command ===> e

e e

e Profile Enqueue settings e

e Enter "/" to select option ENQ Lock Wait 1000 e

e / Prompt for Profile ENQ Lockout ENQ Lock Retry Count . . 1 e

e e

e Profile conflicts e

e System Profile conflicts Reference List conflicts e

e 1 1. Keep 1 1. Keep e

e 2. Discard 2. Discard e

e 3. Prompt 3. Prompt e

e e

e ISPF Profile conflicts Edit Profile conflicts e

e 1 1. Keep 1 1. Keep e

e 2. Discard 2. Discard e

e 3. Prompt 3. Prompt e

e e

e Application Profile conflicts Batch Profile conflicts e

e 1 1. Keep 1 1. Keep e

e 2. Discard 2. Discard e

e 3. Prompt e

e e

e Other Profile conflicts e

e 1 1. Keep e

e 2. Discard e

e 3. Prompt e

e F1=Help F2=Split F3=Exit F7=Backward F8=Forward e

e F9=Swap F12=Cancel e

└───┘

 F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel

Figure 8. Multi-logon profile sharing settings (ISPISSA)

Controlling ISPF sessions

20 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|

|

|
|

|

|

|
|
|
|
|
|

|

|

|
|

The parameter descriptions for the SHRPROF command are as follows:

RESET

Resets all the Shared Profile settings to the values specified in the ISPF

Configuration options.

WAIT

The wait time in milliseconds that ISPF is to wait before retrying when it is

unable to obtain an enqueue on a member of the ISPF profile data set. If

specified, n must an integer in the range 0 to 9999. A value of 0 indicates that

no wait is to occur. The ISPF default is 1000.

RETRY

The number of times that ISPF is to retry to obtain an enqueue on a member of

the ISPF profile data set when it is unable to obtain the enqueue. If specified, n

must an integer in the range 0 to 99. The ISPF default is 1.

PROMPT

ISPF prompts you when it is unable to enqueue on a member of the ISPF

profile data set, and the retry count has been reached. You are then given the

option to either retry again, or cancel the request.

NOPROMPT

ISPF fails the enqueue request when it is unable to obtain the enqueue on a

member of the ISPF profile data set and the retry count has been reached.

CONFLICT

The required action to be taken when a conflict is found updating a member of

the profile data set, where the last updated information has changed. You can

specify a different actions for different types of profile members. When you

specify the CONFLICT parameter, you must also specify a conflict type (see

following list). The conflict action parameter (see following list) is optional; if

you do not specify a conflict action, ISPF use the value specified in the ISPF

configuration settings.

 The supported conflict types are:

SYSTEM

The ISPF System profile member, ISPSPROF.

ISPF The ISPF profile, normally ISPPROF.

APPLID

An application profile member, being a member with ″PROF″ as the

suffix, other than the SYSTEM and ISPF profiles.

REFLIST

Any of the ISPF Reference lists: ISRLLIST, ISRPLIST, or ISRSLIST.

EDIT An ISPF Edit profile member, being a member with ″EDIT″ as the

suffix.

SHRPROF [RESET]

 [WAIT [n]]

 [RETRY [n]]

 [PROMPT | NOPROMPT]

 [CONFLICT

 SYSTEM | ISPF | APPLID | REFLIST | EDIT | OTHER

 [KEEP | DISCARD | PROMPT]]

 [CONFLICT BATCH [KEEP | DISCARD]]

Controlling ISPF sessions

Chapter 2. Controlling ISPF sessions 21

|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|

|
|

||

|
|
|

|
|

||
|

BATCH

Any batch ISPF job.

OTHER

Any other ISPF table in the ISPF profile data set.

The supported conflict actions are:

KEEP The current changes are kept, replacing any other changes previously

saved by another ISPF session sharing the profile.

DISCARD

The current changes are discarded, retaining those already updated in

the profile data set.

PROMPT

A panel is displayed prompting you to either KEEP or DISCARD the

changes.

What the SELECT service does

The SELECT service initiates dialog execution. Selection keywords, passed to the

SELECT service, specify whether the dialog begins with the display of a menu

(PANEL keyword) or the execution of a dialog function (CMD or PGM keyword).

The dialog terminates when the selected menu or function terminates. The action

at termination depends on how the SELECT service was originally invoked.

SELECT is both a control facility and a dialog service. ISPF uses SELECT during its

initialization to invoke the function or selection panel that begins a dialog. During

dialog processing, SELECT displays selection panels and invokes program

functions or command procedure functions.

The principal SELECT parameters are:

 PANEL(panel-name)

 CMD(command)

 PGM(program-name)

See z/OS ISPF Services Guide for a full description of the SELECT service syntax.

The panel-name parameter specifies the name of the next selection panel to be

displayed. You must use the ISPF panel definition statements (described in

Chapter 6, “Panel definition statement guide,” on page 105) to define the panel.

The command and program-name parameters specify a function, coded as a CLIST

command procedure or program, respectively, to receive control. Input parameters

can be passed to the function as part of the command specification or, for

programs, by the use of the PARM parameter.

Figure 9 on page 23 shows how the SELECT service is used when invoking or

processing a dialog. After SELECT starts a dialog, the dialog uses it as a service to

invoke a function or to display a selection panel. In turn, that function or menu

can use SELECT to invoke another function or to display another menu. This

function or menu can, in turn, using SELECT, invoke still another function or

menu. This process can continue for many levels and establishes a hierarchy of

invoked functions and menus. There is no restriction on the number of levels

allowed in this hierarchy.

Controlling ISPF sessions

22 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

|
|

|
|

|

||
|

|
|
|

|
|
|

Subtasks attached by the SELECT service do not share subpools. ISPF specifies

SZERO=NO when issuing the ATTACH macro to ensure that at SELECT

termination the storage that was acquired by ISPF is released.

 When a lower-level function or menu in the hierarchy completes its processing,

control returns to the higher-level function or menu from which it was invoked.

The higher-level function resumes its processing, or the higher-level menu is

redisplayed for the user to make another selection. Thus, SELECT is used in a

dialog to establish a hierarchy of functions and menus. This hierarchy determines

the sequence in which functions and menus are processed, including the sequence

in which they are terminated.

Dialog functions written as command procedures can directly invoke other

functions written as command procedures without using the SELECT service. They

are not treated as new functions by ISPF.

Dialog functions written as programs can invoke another function only through

using the SELECT service. Thus, when a program-coded function calls another

program directly, without using the SELECT service, the called program is treated

as part of the function that called it. It is not treated as a new function by ISPF.

Invoking the SELECT service

The SELECT service can be invoked in these ways:

v During initialization, the dialog manager automatically invokes the SELECT

service to start the first dialog. The selection keywords originally specified on

the ISPSTART command are passed to the SELECT service.

Figure 9. SELECT service used to invoke and process a dialog

Controlling ISPF sessions

Chapter 2. Controlling ISPF sessions 23

For dialogs invoked by ISPSTART, ISPF error processing is not put into effect

until ISPF is fully initialized. ISPF is considered to be fully initialized when the

Enter key on the primary option menu has been processed without a severe

error occurring.

v If you enter split-screen mode, the dialog manager again invokes the SELECT

service and again passes the selection keywords from the ISPSTART command.

This causes the first dialog, specified in the ISPSTART command, to be initiated

on the new logical screen.

v The SELECT service recursively invokes itself when you select an option from a

menu displayed by the SELECT service. In this case, the selection keywords are

specified in the panel definition for the menu.

v The SELECT service can be invoked from a dialog function. In this case, the

selection keywords are passed as calling sequence parameters.

Terminating a dialog

The action taken at dialog termination is as follows:

v If a dialog function invoked the SELECT service, control returns to that function

and the function continues execution.

v If a menu invoked the SELECT service, that menu is redisplayed, including

execution of the INIT section in the panel definition.

v If you are terminating split-screen mode, the original dialog ends on that logical

screen, and the other logical screen expands to the full size of the viewing area.

v If you are terminating ISPF, which can be done only in single-screen mode,

either the ISPF termination panel is displayed or the ISPF SETTINGS defaults for

list/log processing are used.

ISPF displays the termination panel if:

v The dialog started with the display of a menu and you entered the END

command on that menu.

v The dialog started with the execution of a function, and the function ended with

a return code of 0.

The list/log defaults are used if:

v The dialog started with the display of a menu and you entered the RETURN

command or selected the EXIT option.

v The dialog started with the execution of a function and the function ended with

a return code of 4 or higher. A return code other than 0 or 4 causes an error

message to be displayed.

If you have not specified valid list/log defaults, the ISPF termination panel is

displayed in all cases.

Return Codes from Terminating Dialogs

The return code from ISPSTART for a successful dialog completion is either 0 or a

value returned by the executing dialog in the system variable ZISPFRC. ZISPFRC

is a shared-pool input variable of length 8. The dialog can set ZISPFRC to any

value in the range of 0 to 16777215, except the values reserved for ISPF use (900

through 999, and 9000 through 9100). This value must be left-justified and padded

with blanks.

At termination, ISPF copies the value from ZISPFRC and passes it to the invoking

application (or Terminal Monitor Program) in register 15. If the value in ZISPFRC

Controlling ISPF sessions

24 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

is not within the valid range or is otherwise not valid, such as a value that is not

numeric, ISPF issues an appropriate line message and passes a return code of 908.

If the dialog has not set ZISPFRC to a value, ISPF returns a value of 0.

Notes:

1. CLIST procedures that invoke ISPSTART can check the CLIST variable LASTCC

for the ISPF return code. In REXX, check the variable rc after an ISPF function.

2. Even though ISPF restricts the return code value to the range 0 to 16777215,

other products or subsystems, such as JES when processing JCL condition

codes, can be more restrictive on return code values. See documentation for the

affected product for more information.

3. ZISPFRC should not be confused with the normal dialog return code set by the

function; it has no effect on ISPF log/list termination processing.

ZISPFRC is intended to be used by applications that invoke a dialog dedicated to a

single task or function. However, it is valid to set ZISPFRC from a selection panel

invoked by the ISPSTART command.

ISPF checks for the existence of ZISPFRC only at ISPF termination. If ZISPFRC is

set by any dialog other than the one invoked by the ISPSTART command, ISPF

ignores the value.

Return Codes from Termination Dialogs

Error codes that ISPF can return in register 15 to an application are:

908 ZISPFRC value not valid.

920 ISPSTART command syntax not valid.

985 An attempt was made to start a GUI in batch mode, but no workstation

connection was made.

987 An attempt was made to start GUI with GUISCRW or GUISCRD and the

GUI initialization failed.

988 An error occurred initializing IKJSATTN.

989 The ISPF C/S component window was closed while still running ISPF in

GUI mode.

990 An error occurred running in batch mode. If ZISPFRC has not been set

previously, and ISPF encounters a severe error that terminates the product,

then 990 is set.

997 Uncorrectable TPUT error.

998 ISPF initialization error. A 998 error code can result from:

v Required ISPF data element library not preallocated

v Error opening ISPF data element library

v ISPF data element library has invalid data set characteristics

v Error loading literals module

v Recursive ISPF call

ISPF issues a line message that indicates which of these errors caused the

998 return code.

999 ISPF environment not valid. A 999 error code can result from:

v TSO/MVS environment not valid

v Unsupported screen size

ISPF issues a line message that indicates which of these errors caused the

999 return code.

Controlling ISPF sessions

Chapter 2. Controlling ISPF sessions 25

When running in batch, ISPF can also return the following return codes:

9008 Abend termination.

9012 Attach error.

9014 Authorized command invocation error, or TSO CMD START exit routine

rejected the command.

9016 Command not found, or was otherwise unable to execute, or an exit

routine returned an invalid return code.

9018 Invalid command: LOGOFF, ISPF, etc.

9020 TSO RTN IKJTBLS (called from CAU) abended.

An example using the ZISPFRC return code

Figure 10 shows a portion of a background job that invokes ISPF. The final job step

runs only if the job step that invoked the ISPF dialog terminates with a return code

of 8 or less.

 The portion of the invoked dialog, DIALOG1, that establishes the value in system

variable ZISPFRC is shown in Figure 11 on page 27.

 ...

//**

//* *

//* INVOKE ISPF TO EXECUTE DIALOG "DIALOG1". *

//* DIALOG1 PASSES BACK A RETURN CODE OF *

//* 20 IF IT DID NOT PROCESS SUCCESSFULLY. *

//* *

//**

//ISPFSTEP EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=2048K

//*

//* ALLOCATE DIALOG AND ISPF PRODUCT LIBRARIES, *

//* ISPF LOG DATA SET, AND TSO OUTPUT DATA SET. *

//* *

//ISPPROF DD DSN=USER1.ISPF.TABLES,DISP=SHR ...
//* ALLOCATE TSO INPUT DATA SET. *

//* *

//SYSTSIN DD *

 PROFILE PREFIX(USER1) /* ESTABLISH PREFIX */

 ISPSTART CMD(%DIALOG1) /* INVOKE DIALOG1 */

/*

//**

//* *

//* EXECUTE NEXT JOB STEP ONLY IF THE ISPF STEP *

//* ENDED WITH A RETURN CODE LESS THAN OR EQUAL *

//* TO 8. THAT IS, BYPASS THE STEP IF 8 IS *

//* LESS THAN THE ISPF RETURN CODE. *

//* *

//**

//NEXTSTEP EXEC PGM=IKJEFT01,DYNAMNBR=30,REGION=2048K,

// COND=(8,LT,ISPFSTEP)

 ...

Figure 10. Sample background ISPF job

Controlling ISPF sessions

26 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

ISPF test and trace modes

The testing modes of ISPF provide special processing actions to help debug a

dialog. Consider using the Dialog Test (option 7) facility.

You can specify any one of four mutually exclusive keyword parameters on the

ISPSTART command to control the operational mode when testing a dialog:

TEST Test mode

TESTX Extended test mode; logged messages are displayed

TRACE Trace mode; ISPF service calls are logged

TRACEX Extended trace mode; ISPF service calls are logged and displayed

Test modes

In TEST mode, ISPF operates differently from normal mode in these ways:

v Panel and message definitions are fetched again from the panel and message

files when a panel name or message ID is specified in an ISPF service. In normal

mode, the most recently accessed panel definitions are retained in virtual

storage. If you have modified the panel or message file, use of TEST mode

ensures that the latest version of each panel or message is accessed during a test

run.

Using an editor to modify a panel, message, or skeleton can result in an

additional DASD extent being required for the associated data set. DASD rarely

(if ever) gains new extents as the result of the execution of software (with the

possible exception of DASD formatting software). It can also be caused by

link-editing a module. When a new extent is allocated, you can access the

modification only by first terminating and then invoking ISPF again.

v Tutorial panels are displayed with current panel name, previous panel name,

and previous message ID on the bottom line of the display screen. This assists

you in identifying the position of the panel in the tutorial hierarchy.

v Screen printouts, obtained through use of the PRINT or PRINT-HI commands,

include line numbers, current panel name, and message ID.

v In PDF, the index listing (option 3.1) for a partitioned data set includes TTR data

for each member of the data set.

v If a dialog function is operating in the CANCEL error mode (the default), the

panel that is displayed on an error allows you to force the dialog to continue in

spite of the error. Results from that point on, however, are unpredictable and

ISPF can abend.

If a dialog function is operating in any other error mode, and a command run

from the SELECT service abends, any ISPF-detected error, abend, or program

interrupt forces an abend of ISPF. You can also force an abend by entering

PROC 0

 ...

IF &MAXCC > 8 THEN +

 DO

 SET &ZISPFRC = 20

 VPUT (ZISPFRC) SHARED

 END

EXIT CODE(0)

Figure 11. Sample dialog using system variable ZISPFRC

Controlling ISPF sessions

Chapter 2. Controlling ISPF sessions 27

ABEND or CRASH in the command line of any panel. For more information

about the SELECT service, refer to the z/OS ISPF Services Guide.

v The PA1 key causes an immediate exit from ISPF.

The ISPF controller task attaches one ISPF subtask for each logical screen. Any

additional logical screens are created by the SPLIT command and there can be up

to four screens on a 3290 terminal.

If an ISPF subtask abends, pressing Enter after the abend message appears

generates a dump, provided that a SYSUDUMP, SYSMDUMP, or SYSABEND data

set has been allocated.

Dialogs invoked with the SELECT CMD(XXX) cause an attach of a new subtask

under the ISPF subtask. If an abend occurs under the new subtask, an immediate

dump is taken.

In TESTX mode, ISPF operates the same as it does in TEST mode, except that all

messages written to the ISPF log file are also displayed at the terminal.

ISPF provides the ENVIRON command, which allows you to cause a dump

following an abend condition, even if ISPF is not running in TEST mode. See

“Using the ENVIRON system command” on page 380 for a description of using

the ENVIRON command.

ISPF trace modes

In TRACE mode, ISPF operates as it does in TEST mode, except that a message is

written to the ISPF log file when any ISPF service is invoked, even if CONTROL

ERRORS RETURN has been issued, and when any error is detected by an ISPF

service. Note that only CLIST, APL2, and CALL ISPEXEC service requests are

recorded. This does not include service requests issued under Dialog Test option

7.6. CALL ISPLINK requests for service are not recorded in the log file.

In TRACEX (extended trace) mode, ISPF operates the same as it does in TRACE

mode except that all messages written to the ISPF log file, including the trace

messages, are also displayed at the terminal. If the length of the message text

exceeds the width of the terminal screen, the message will be truncated.

Invoking authorized programs

You can invoke authorized programs by using the SELECT service, a selection

panel, a command table, or by using the TSO CALL command under ISPF. ISPF

uses the TSO Service Facility IKJEFTSR to invoke authorized commands and

programs. Authorized programs are invoked under the TSO TMP (Terminal

Monitor Program) and therefore should not reside in the ISPLLIB library.

Authorized programs cannot issue dialog service requests. See z/OS TSO/E

Customization for information about adding authorized programs and commands to

the list maintained by your installation.

Invoking TSO commands

TSO commands can be initiated by use of the SELECT dialog service (with the

CMD keyword), from a selection panel, from a command table, by entering the

ISPF TSO system command in the command field of any panel, or be contained in

a CLIST or REXX command procedure that is invoked under ISPF.

Controlling ISPF sessions

28 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

You can invoke authorized TSO commands by using the SELECT service, a

selection panel, or a command table. Authorized commands are attached under the

TSO TMP (Terminal Monitor Program) and, therefore, should not reside in the

ISPLLIB library. Authorized commands cannot issue dialog service requests.

You can run most TSO commands under ISPF. These commands are not allowed:

v LOGON

v LOGOFF

v SPF

v ISPF

v PDF

v ISPSTART

v TEST

v Commands that are restricted by TSO

Note: The LOGON, LOGOFF, and TEST commands can be run within ISPF if the

TSOEXEC interface is used (for example, TSO TSOEXEC LOGOFF). In that case,

the LOGON and LOGOFF commands are processed upon ISPF termination,

instead of returning to TSO READY. When the TEST command is being run,

TSO TEST is entered immediately. However, because TSOEXEC runs

commands in a parallel TMP structure, ISPF dialogs cannot be run under

TSO TEST in this situation.

Compiled REXX requirements

ISPF supports compiled REXX load modules through ISPSTART and the SELECT

service. The REXX program must be compiled with the OBJECT option of the IBM

Compiler for REXX/370. This OBJECT output needs to be link-edited with the

CPPL stub that is a part of the IBM Library for REXX/370.

The SELECT service and ISPSTART command contain a value, CREX, for the

LANG parameter on the CMD keyword. Specifying LANG(CREX) on the CMD

keyword indicates that it is a Compiled REXX load module and that a REXX

function pool is to be used for variable manipulation. LANG(CREX) is optional if

the compiled REXX has been link-edited to include any of the stubs EAGSTCE,

EAGSTCPP, or EAGSTMP.

The CPPL stub takes the parameters that are passed by the SELECT CMD service

or the ISPSTART invocation, and converts them into arguments for the REXX

program. For complete details on how to create a REXX load module, see IBM

Compiler and Library for REXX on zSeries User’s Guide and Reference.

Compiled REXX programs that were compiled with the CEXEC option must be

started using the CMD option of the SELECT service or ISPSTART command, and

must NOT use the LANG(CREX) parameter.

CLIST requirements

A CLIST cannot invoke any of the restricted TSO commands. TERMIN command

procedure statements can cause unpredictable results.

Note: If a CLIST contains CONTROL MAIN, the TSO input stack is not flushed

after an ISPF severe error.

Controlling ISPF sessions

Chapter 2. Controlling ISPF sessions 29

Attention exits

When a CLIST command procedure is executing under ISPF, the ATTN statement

in the procedure defines how attention interrupts are to be handled. You can find

information about using attention exits in z/OS TSO/E CLISTs and z/OS TSO/E

Programming Services.

Restrictions on using attention exits from CLISTs

Restrictions that apply to using attention exits from a CLIST dialog are:

v CLIST attention exits are not supported when running in ISPF TEST or TRACE

modes. This is because the ISPF attention exit routine is not established in TEST

or TRACE modes.

v The CLIST must issue a null command to return from an attention exit. If the

dialog issues a TSO command to terminate the exit routine, ISPF discards the

command. The ISPF dialog then resumes execution as if CONTROL MAIN

NOFLUSH were in effect for this CLIST.

v You can stack CLIST attention exits only within one SELECT CMD level. An exit

applies only to the logical screen from which the CLIST owning the attention

exit was invoked. Therefore, when you are operating in split-screen mode,

invoking a CLIST attention exit from one logical screen has no effect on the

other logical screens.

v Do not invoke an ISPF dialog service from a CLIST attention exit routine. If you

do, results are unpredictable.

v Attention interrupts initiated while an exit routine is executing are not honored.

Examples of CLIST attention exit process flow

See:

v “Single CLIST with one attention exit”

v “Nested CLISTs with two attention exits (one SELECT level)”

v “Nested CLISTs with one attention exit” on page 31

v “Nested CLISTs and SELECT levels with one attention exit” on page 31

Single CLIST with one attention exit:

1. From a selection panel, select a CLIST procedure named CLIST1. CLIST1 has

one attention exit routine, named ATTN1.

2. CLIST1 displays PANEL1.

3. Press the attention key.

4. Exit routine ATTN1 runs and PANEL1 redisplays.

Nested CLISTs with two attention exits (one SELECT level):

1. From a selection panel, select a CLIST procedure named CLIST1. CLIST1 has

one attention exit routine, named ATTN1.

2. CLIST1 invokes procedure CLIST2 by using the TSO EXEC command. CLIST2

has one attention exit routine, named ATTN2.

3. CLIST2 displays PANEL2.

4. Press the attention key.

5. Exit routine ATTN2 runs and PANEL2 redisplays.

6. Press Enter to return control to CLIST2. CLIST2 then terminates processing and

control returns to CLIST1.

7. CLIST1 displays PANEL1.

8. Press the attention key.

9. Exit routine ATTN1 runs and PANEL1 redisplays.

Controlling ISPF sessions

30 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Nested CLISTs with one attention exit:

1. From a selection panel, select a CLIST procedure named CLIST1. CLIST1 has

one attention exit routine, named ATTN1.

2. CLIST1 invokes procedure CLIST2 by using the TSO EXEC command. CLIST2

has no attention exit routine.

3. CLIST2 displays PANEL2.

4. Press the attention key.

5. Exit routine ATTN1 runs and PANEL2 redisplays.

6. Press Enter to return control to CLIST2. CLIST2 then terminates processing and

control returns to CLIST1.

7. CLIST1 displays PANEL1.

8. Press the attention key.

9. Exit routine ATTN1 runs and PANEL1 redisplays.

Nested CLISTs and SELECT levels with one attention exit:

1. From a selection panel, select a CLIST procedure named CLIST1. CLIST1 has

one attention exit routine, named ATTN1.

2. CLIST1 invokes procedure CLIST2 by using the ISPEXEC SELECT

CMD(CLIST2) command. CLIST2 has no attention exit routine.

3. Press the attention key.

4. Because CLIST2 has no attention exit routine, and ISPF does not propagate

attention exits across SELECT levels:

v An error message indicates that a CLIST was interrupted by an attention

condition.

v The logical screen terminates and restarts, causing the primary option menu

to redisplay.

Using APL2

ISPF permits the use of APL2, as follows:

v ISPF dialogs can be written in an APL2 workspace.

v APL2 can be selected as a command, initializing an ISPF-APL2 environment.

v APL2 functions can be selected as options (from a selection panel), as ISPF

commands (from an application command table), or from another dialog

function, once the ISPF-APL2 environment has been established.

v All dialog manager services available to the command language dialog writer

are executable from the APL2 workspace after the ISPF-APL2 environment has

been established.

v ISPF views the APL2 workspace variables as the dialog function pool whenever

an ISPF dialog service is executing.

v ISPF supports APL on a DBCS device with an APL keyboard.

The ISPF/GDDM interface is not available to an APL2 dialog. However, the APL2

dialog can interface directly with GDDM and interleave the ISPF and GDDM

services.

Invoking APL2

You can invoke APL2 by specifying the APL2 command and its appropriate

keywords as the value of the CMD keyword of the SELECT service. You must also

code the SELECT keyword and the value LANG(APL) on the SELECT statement.

Controlling ISPF sessions

Chapter 2. Controlling ISPF sessions 31

The LANG(APL) parameter provides the basis for establishing an ISPF-APL2

environment. It is required if any ISPF dialog services are to be used.

You can code any of the APL2 command keywords. However, be aware of:

APNAMES

ISPF and APL2 communicate through an APL2 Auxiliary Processor (AP),

ISPAPAUX, which is released with the ISPF product. This AP, number 317,

must be made available to APL2 when APL2 is invoked, as follows:

v The dialog writer can specify ISPAPAUX in the APNAMES list of

auxiliary processors to be dynamically loaded.

When APL2 is invoked, ISPAPAUX must exist as a load module in a

system library, or in a private library named by the LOADLIB keyword.

LOADLIB

Keep in mind that if this keyword is used, the dialog must be changed or

accept this keyword’s value dynamically (for example, through a variable),

if the name of the private library containing the AP is changed.

TERMCODE (code)

The user is prompted to enter an appropriate character if this keyword is

not coded. This allows APL2 to identify the terminal type that is currently

being used.

 Typically, a dialog ensures that the user does not have to perform this extra

step by identifying the terminal type through the TERMCODE keyword.

 ISPF system variable ZTERM contains this information. However, ISPF

terminal types are different from those of APL2. For those dialog writers

who wish to make use of currently available ISPF information, program

dialog ISPAPTT can be selected before the call of APL2. ISPAPTT expects

one parameter, which is the ISPF variable name into which the

corresponding APL2 terminal type is returned. The variable is created in

the shared variable pool.

 For a CLIST, the use of ISPAPTT can look as follows:

...

ISPEXEC SELECT PGM(ISPAPTT) PARM(APLTT)

ISPEXEC VGET APLTT

ISPEXEC SELECT CMD(APL2.....TERMCODE(&APLTT)) LANG(APL)

 ...

These ISPF to APL2 mappings are supported:

 ISPF APL2

 (ZTERM)

 3277 3277

 3278 3279

 3277A 32771

 3278A 32791

 3278T 32791

 3278CF 3279

 3277KN 3277

 3278KN 3279

 If ISPF is executing in the background, then ISPAPTT will return a terminal

code of 1.

Controlling ISPF sessions

32 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

If ZTERM contains a value other than those previously listed, the specified

variable is set to a value of 3277 in the shared variable pool.

FREESIZE, WSSIZE

Some combination of these keywords should be coded to accommodate the

user’s storage requirements; however, remember that ISPF and the

ISPF-APL2 AP require storage (beyond that currently allocated) to run,

especially if ISPF split-screen facilities are to be used.

INPUT

A user dialog can specify the INPUT keyword to load a given workspace,

start an APL2 dialog function, and terminate APL2. This allows a user to

enter APL2, use APL2 dialog capabilities, and leave APL2 without needing

special APL2 expertise.

 For example, to start a dialog named EMPLOY in workspace MYWS:

INPUT(’)LOAD MYWS’ ’EMPLOY’ ’)OFF HOLD’)......

Note that a dialog function can also be started through the latent function

definition in the workspace. In addition, the Alternate Input Auxiliary

Processor, AP101, can be used to stack commands for execution.

 If INPUT is coded and QUIET and PROFILE are not coded, the first ISPF

panel can be refreshed before the keyboard is unlocked.

QUIET

A dialog can specify the QUIET keyword to suppress the APL2 entry and

exit information, so that the user does not see non-dialog APL2 messages.

PROFILE

A dialog can specify the PROFILE keyword with a value of null to

suppress any entry and exit APL2 session manager screens, so that the user

does not see any non-dialog panels.

Executing APL2 functions

It is possible to start an APL2 function dialog by using the INPUT keyword, as

described in “Invoking APL2” on page 31. However, for many applications it is

necessary to invoke additional APL2 functions as options (from a selection panel),

as commands (from an application command table), or from other dialog functions.

Such functions are selected by specifying the function request as the value of the

SELECT CMD keyword, and once again, specifying LANG(APL). Because APL2

has already been started, and the APL2 environment established, the string is

passed back to the APL2 workspace, and an APL2 EXECUTE function is

performed on the string. For example, option 5 on a selection panel can be defined

to APL2 function AVG (assuming that APL2 has already been started) as follows:

...
5,’CMD(AVG 1 2 3 4 5) LANG(APL)’ ...

The return code for the selected function is passed back as a fullword of 0 (zero) if

no terminating (to a quad-EA) APL2 errors have occurred. Otherwise, a fullword

consisting of the quad-ET values in the two halfwords is returned.

APL2 cannot be invoked more than once, either within the same screen or on more

than one screen. ISPF does nothing to prevent the second call. If APL2 is invoked a

Controlling ISPF sessions

Chapter 2. Controlling ISPF sessions 33

second time while running under ISPF, the results are unpredictable. Note that

ISPF’s split-screen capabilities can be used as long as APL2 is not invoked on a

second screen.

Invoking ISPF dialog services in the APL2 environment

A dialog service can be invoked by using the function form of ISPEXEC:

[n] lastrc←ISPEXEC character-vector

lastrc

Specifies the name of an APL2 variable in which the return code from the

service is to be stored.

character-vector

Specifies a vector of characters that contains parameters to be passed to the

dialog service. The format of the vector is the same as that for dialog service

statements for command procedures written in CLIST.

 A workspace containing the ISPEXEC function is provided with ISPF. All dialog

writers must use this ISPEXEC function, as it contains the interface to ISPF and

handles the implementation of commands (through the APL2 EXECUTE function);

otherwise, results are unpredictable.

For example:

APL2 workspace as the ISPF function pool

When an APL2 function invokes an ISPF dialog service, the APL2 workspace is

considered to be the ISPF function pool. The dialog writer need not do anything

special to make use of this mechanism. However, these restrictions apply:

v Any variable retrieved or set is the most local to the currently executing APL2

function.

v The dialog writer should not use variables whose names begin with the three

characters ISP; these names are reserved for ISPF. All variables used in the

ISPEXEC function have names that start with these three characters.

v Only those variables whose names and formats fit both ISPF and APL2 protocols

can be used for ISPF entities such as panels or tables:

– All variable names must be 1 to 8 characters in length, composed of

alphanumeric characters (A-Z, 0-9), of which the first must not be numeric.

Note that #, $, and @ are not allowed.

– All variable values must be simple character strings; APL2 general data types

are not allowed. Note that the only acceptable null vector is that for character

strings (‘’).

If an attempt is made to use a name or format incompatible with ISPF for an

ISPF entity, a severe error occurs. Any APL2 name or format can be used within

a dialog function, as long as that variable is not used for an ISPF entity.

v Whenever an APL2 function is selected after APL2 is started, the original APL2

function pool (the APL2 workspace) is used. This implies that information can

Controlling ISPF sessions

34 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

remain in the function pool from previous SELECTs, and the dialog writer must

handle any such cases. Moreover, this rule is unaffected by SELECTs where new

shared or profile pools are created; it is the responsibility of the dialog writer to

ensure that the integrity of the workspace is maintained.

v If the PDF component is installed, and the Dialog Test Variables option is

requested, only those variables that have the correct name and format are

displayed; if an attempt is made to enter a variable with a name that is not valid

(to ISPF or APL2), an error occurs. The variables displayed are the most local to

the currently executing function.

v A maximum of 64K bytes can be retrieved from the APL2 workspace during the

execution of a DM service.

Interface between ISPF and APL2

The interface between ISPF and APL2 is like a telephone call. If one side of the

communication is broken, any attempt to use the interface causes error messages to

be generated. The link between the two products can be broken by:

v The APL2 user “hanging up”. For example, if a new workspace is loaded and

there are still ISPF service requests that have not completed (for example,

options in the selection panel process), the ISPF Auxiliary Processor (ISPAPAUX)

issues an error message, informs ISPF and waits for the process to begin again

(by “hanging up” until another ISPF request is made). ISPF issues a severe error

message telling the user that the link has been damaged.

If the user is in ISPF TEST mode, then, on user request, ISPF attempts to reshow

all panels traversed in an effort to unnest all service requests. When all requests

have been unnested, ISPF will again wait for the ISPF Auxiliary Processor to

make a request. During the unnesting process, any attempts to invoke APL2

functions are rejected, severe error messages are issued, and any requests for

APL2 variables are logged.

v The APL2 user “cutting the line”. For example, if the user terminates APL2

while there are still outstanding APL2 function requests from ISPF (for example,

options in the selection panel process), the ISPF Auxiliary Processor (ISPAPAUX)

issues an error message, informs ISPF, and terminates. ISPF issues a severe error

message telling the user that the link has been damaged, and if in TEST mode,

proceeds to unnest as previously described. When all requests have been

unnested, APL2 will be terminated. During the unnesting process, any attempts

to invoke APL2 functions are rejected, severe error messages are issued, and any

requests for APL2 variables are logged.

v An APL2 failure. This is handled as if the line were cut, assuming APL2

performs recovery and returns to ISPF.

v An ISPF failure. In this case, ISPF or the logical screen can fail, causing APL2

termination.

Subtasking support

A dialog attached by ISPF, as described in “Invoking TSO commands” on page 28,

can invoke a dialog service. It does this by a call to either the ISPLINK or ISPEXEC

interfaces from any subtask level. For subtasks to issue ISPF services, the program

that attaches these subtasks must be invoked with the SELECT(cmd) service.

In addition, ISPF allows a task to detach its subtask at any time, even if an ISPF

service invoked by that subtask is processing. The SUBTASK keyword of the

CONTROL service, described in z/OS ISPF Services Guide, provides additional

information. Multiple dialog services issued from multiple tasks executing

asynchronously are not supported, and results will be unpredictable.

Controlling ISPF sessions

Chapter 2. Controlling ISPF sessions 35

ESTAE restrictions

Programs that code their own ESTAE routines should not issue ISPF services

within the MVS ESTAE routine. Unpredictable results can occur. For more

information on ESTAE, refer to z/OS MVS Programming: Assembler Services Reference

ABE-HSP. For more information on using MVS macros, refer to z/OS MVS

Programming: Assembler Services Guide.

ISPF services in batch mode

When initiated in a batch environment, ISPF services run as a background

command. Background calls are generally used to invoke ISPF table and file

tailoring services. However, access to other dialog services is also available.

Command processors in the TSO batch environment

TSO provides facilities for executing command processors in the batch

environment. The JCL stream provides for data sets to be preallocated before the

call of any command. Invoke the Terminal Monitor Program (TMP) using the

EXEC statement to establish the necessary control blocks for the TSO environment.

The command input stream is accessed from the SYSTSIN DD statement. All

terminal line I/O outputs issued by the TSO I/O service routines are directed to

the SYSTSPRT DD statement definition. Allocate ISPF libraries by using DD

statements. Panel, message, skeleton, table, and profile data sets must be

preallocated. While not required, it is recommended that the log data set also be

preallocated. If a log data set is dynamically allocated, it is always kept at ISPF

termination.

To invoke ISPF, place the ISPSTART command in the SYSTSIN input stream with

the PANEL, CMD, or PGM keywords that name the dialog to be invoked.

Note: When running on MVS with TSO/E Version 2 Release 1, ISPF does not read

and run the CLIST statements that follow the ISPSTART command. With

ISPF running in batch (background) mode in the MVS environment with

TSO/E Version 2 Release 1, you can select a CLIST procedure.

A user ID is selected for the background job as follows:

1. If available, the user ID supplied during RACF® authorization checking is used.

2. If a user ID is not available from RACF, the prefix supplied with the TSO

PROFILE command is used.

3. If neither of these is available, the default is BATCH.

Although the user ID defaults to BATCH, the prefix used by ISPF when

dynamically allocating a data set has no default. Therefore, a prefix should always

be supplied on the TSO PROFILE command. At various times, ISPF attempts

dynamic allocation and if no prefix has been supplied, allocation will fail and the

job will abend. Multiple jobs executing concurrently must have unique prefixes.

The contents of positions 17-24 in system variable ZENVIR indicate whether ISPF

is running interactively (TSO followed by five blanks) or background (BATCH

followed by three blanks).

Sample batch job

Figure 12 on page 37 shows a sample batch job. This job invokes the MVS/TSO

Terminal Monitor Program (TMP) which, in MVS, establishes the environment

necessary to attach command processors. The ISPSTART command is specified in

Controlling ISPF sessions

36 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

the TSO background input stream (SYSTSIN) with the name of a CLIST

(TBUPDATE) that contains the ISPF services to be run.

Processing errors

ISPF terminates with an error message if a required library is not available. The

ISPSTART command must also be invoked naming either a CLIST, PGM function,

or selection panel. If no dialog is specified, a message is issued. These messages

are directed to the data set defined by the SYSTSPRT DD statement.

Errors encountered during background dialog execution are handled in the same

manner as errors encountered during foreground execution. Messages normally

written to the ISPF log data set for severe errors are also written to the SYSTSPRT

file. This is useful when executing a CLIST dialog because any error messages are

listed immediately after the ISPEXEC service in which the error occurred.

If a function encounters an abend, the entire ISPF batch job stream terminates. A

message is issued to the SYSTSPRT file indicating the type of abend.

Batch display facility for background panel processing

The Batch Display Facility allows applications to simulate full-screen write

operations while ISPF is executing in the background. This requires that dialogs

provide the input to ISPF that would normally be supplied by the user or by

information associated with the type of terminal being used. Much of this is done

by having the dialog assign values to panel input variables, and by supplying

screen size information through keywords on the ISPSTART command.

//USERAA JOB (AA04,BIN1,000000),’I. M. USERAA’,

// CLASS=L,MSGCLASS=A,NOTIFY=USERAA,MSGLEVEL=(1,1)

//*---*/

//* EXECUTE ISPF COMMAND IN THE BACKGROUND */

//*---*/

//*

//ISPFBACK EXEC PGM=IKJEFT01,DYNAMNBR=25,REGION=1024K

//*- - ALLOCATE PROFILE, PANELS, MSGS, PROCS, AND TABLES -*/

//ISPPROF DD DSN=USERAA.ISPF.PROFILE,DISP=OLD

//ISPPLIB DD DSN=ISP.SISPPENU,DISP=SHR

//ISPMLIB DD DSN=ISP.SISPMENU,DISP=SHR

//ISPSLIB DD DSN=ISP.SISPSENU,DISP=SHR

// DD DSN=ISP.SISPSLIB,DISP=SHR

//ISPTLIB DD DSN=USERAA.ISPF.TABLES,DISP=SHR

// DD DSN=ISP.SISPTENU,DISP=SHR

// DD DSN=ISP.SISPTLIB,DISP=SHR

//ISPTABL DD DSN=USERAA.ISPF.TABLES,DISP=SHR

//*

//*- - ALLOCATE ISPF LOG DATA SET - - - - - - - - - - - -*/

//ISPLOG DD DSN=USERAA.ISPF.LOG,DISP=SHR

//*

//*- - ALLOCATE DIALOG PROGRAM AND TSO COMMAND LIBRARIES -*/

//ISPLLIB DD DSN=USERAA.ISPF.LOAD,DISP=SHR

//SYSEXEC DD DSN=ISP.SISPEXEC,DISP=SHR

//SYSPROC DD DSN=ISP.SISPCLIB,DISP=SHR

//*

//*- - ALLOCATE TSO BACKGROUND OUTPUT AND INPUT DS - - - -*/

//SYSTSPRT DD DSNAME=USERAA.ISPF.ISPFPRNT,DISP=SHR

//SYSTSIN DD *

 PROFILE PREFIX(USERAA) /* ESTABLISH PREFIX */

 ISPSTART CMD(%TBUPDATE) /* INVOKE CLIST DIALOG */

/*

Figure 12. MVS batch job

Controlling ISPF sessions

Chapter 2. Controlling ISPF sessions 37

Batch execution has traditionally not allowed the use of services that require user

interaction. Any full-screen write operation would result in an error condition.

The Batch Display Facility overcomes these limitations. Although there is no user

interaction during execution; the Batch Display Facility does allow background

execution of interactive services. These services include:

v DISPLAY

v TBDISPL

v SELECT PANEL

v SETMSG

v PQUERY

These services are issued for batch just as they are issued for dialogs running in

interactive mode. ISPF GDDM services do not run in the background, and thus,

cannot be requested in a batch environment.

All ISPF commands except SPLIT and SPLITV can be executed in dialogs running

in batch mode.

Installations can easily convert current interactive applications that use these

services so they run in a batch environment. When you are running in a batch

environment, you cannot direct your display to a workstation; that is, the GUI

parameter on the ISPSTART command is not supported in a batch environment.

Supplying input in lieu of interactive users

When an application is running in batch, there is no user to respond to panel input

operations. Therefore, the primary requirement for running interactive applications

in batch is to supply expected input data by an alternate means. For example,

panel variables can be given values by dialog function statements or by the

processing specified in the panel’s executable sections. This processing is begun in

the batch environment as though a user had pressed Enter. In the absence of an

alternative action on the dialog’s part, ISPF assumes an ENTER condition

following a panel display.

A dialog can override the ENTER condition and establish an END condition by

performing any of these actions:

v Using the .RESP control variable

v Setting the panel command field to END

v Issuing a CONTROL NONDISPL END before the display operation

Supplying batch terminal characteristics

In a batch environment there is no terminal from which ISPF can get screen width

and screen depth values, so you must supply to ISPF data related to terminal type.

You can include two optional keywords, BATSCRW and BATSCRD, on the

ISPSTART command line to specify, respectively, screen width and screen depth

values. The default values, if you do not include these keywords, are a screen

width of 80 characters and a screen depth of 32 lines. The width and depth values,

whether specified on the ISPSTART command or through the default values,

establish the values in system variables ZSCREENW, ZSCREEND, ZSCRMAXW,

and ZSCRMAXD.

In addition to the display services, use of the PQUERY service requires that the

screen width and depth values be supplied to ISPF, either through default values

or as defined on the ISPSTART command.

When running batch, terminal characteristics cannot be changed during a session,

although some characteristics can be changed during an interactive session. For

Controlling ISPF sessions

38 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

example, when ISPF is running interactively you can specify 3278 Model 5 and

3290 screen formatting. In batch mode, a dialog does not interact with a physical

screen. Therefore, screen size, specified by including the BATSCRW and BATSCRD

keywords on the ISPSTART command, is fixed for the duration of the batch

session.

When running in batch mode, you can include the BDBCS keyword on the

ISPSTART command. ISPF then processes the dialog as though it were running on

a DBCS terminal.

The value in system variable ZCOLORS defines the number of colors (either 1 or

7) that a terminal can display. In batch mode, ISPF sets ZCOLORS to 1.

The value in system variable ZHILITE (YES or NO) determines if a terminal is to

have extended highlighting capability, including underscore, blinking, and reverse

video. In batch mode, ISPF sets ZHILITE to NO.

Message processing in the batch environment

In an interactive environment ISPF displays two types of messages:

v Informational messages, normally those resulting from the MSG keyword

specified on the SETMSG, DISPLAY, or TBDISPL service

v Error messages, including those resulting from the .MSG control variable in an

executable panel section.

When running in a batch environment, ISPF writes any informational or error

messages to the ISPF log data set at the processing point that the messages would

normally be displayed to a user. The information logged includes the name of the

panel associated with the message, followed by the short message and the long

message.

A .MSG-initiated error message plus an ENTER condition causes a panel redisplay.

In a batch environment, there is no interactive user to correct the error, so it must

be handled by statements in the panel’s)REINIT or)PROC sections. This leads to

the possibility of a .MSG-redisplay loop if the error condition is not corrected.

Some panel language functions that can lead to this problem are VER, TRANS,

ADDSOSI, DELSOSI, .MSG, and PANEXIT. To prevent this loop, a BREDIMAX

keyword on the ISPSTART command is available to specify the maximum number

(default 2) of redisplays. If this number of redisplays is exceeded, a severe error

condition (return code 20) results and the related error message is written to

SYSTSPRT.

Command processing in the batch environment

ISPF processes most commands when running in the batch environment in the

same way it processes them when running interactively, except that:

v The SPLIT and SPLITV commands are disabled.

v The ENVIRON, LOG, LIST, ISPPREP, KEYS, ZKEYS, and PFSHOW TAILOR

commands can result in display loops.

Display error processing in the batch environment

When ISPF is running interactively with CONTROL ERRORS CANCEL in effect, a

return code of 12 or higher causes the ISPF error panel to display. These same

conditions in the batch environment cause the error panel message to be written to

the SYSTSPRT data set, after which ISPF terminates. In the interactive or batch

environment with CONTROL ERRORS RETURN in effect, control returns to the

dialog for error processing following a return code of 12 or higher.

Controlling ISPF sessions

Chapter 2. Controlling ISPF sessions 39

How ISPF handles log and list data sets in the batch

environment

If ISPF allocates a log or list data set in the batch environment, it is always kept at

termination, regardless of the disposition specified on SETTINGS Option 0.

Avoiding panel loop conditions in the batch environment

When writing new dialogs or altering existing dialogs to run in the batch

environment, dialog developers must be very careful not to create functions that

result in a processing loop where user input is expected and none is supplied. See

“Supplying input in lieu of interactive users” on page 38 for more information. For

example, running the ISPPREP command causes ISPF to call an interactive

ISPPREP dialog, which will cause a loop condition in a batch environment. Instead,

you should invoke the non-interactive ISPPREP facility directly by using the

SELECT PGM(ISPPREP) service request as described for batch mode under

Figure 50 on page 153.

The KEYS command can cause a loop condition because its processing termination

depends on an END or RETURN command. An ENTER condition, which ISPF

assumes in absence of an END or RETURN being forced, results only in another

panel display, which leads to a loop condition.

To help deal with possible looping situations, the BDISPMAX keyword on the

ISPSTART command is available to specify the maximum number of panel

displays that can occur during a session. The default value is 100. You can test the

current number of displays in a batch mode session by reading the ZBDMXCNT

system variable. The value of BDISPMAX is stored in the ZBDMAX system

variable.

If the number specified in BDISPMAX is exceeded, a severe error condition (return

code 20) results and an error message, stating that the maximum number of

displays has been exceeded, is written to the SYSTSPRT data set.

ISPF graphical user interface in batch mode

ISPF provides the capability to run the ISPF Client/Server (C/S) component in a

batch environment. You can start ISPF using the GUI parameter to enable a C/S

session to run on a specific workstation without tying up the invoking session.

This function also enables you to capture REXX trace output (in SYSTSPRT), and to

invoke ISPF without a 3270 terminal, such as through an icon on the workstation

through APPC or TCP/IP, or through a Telnet line mode session.

Restrictions

When using the batch mode capabilities of the C/S, be sure to consider these

restrictions:

v The number of initiators on the batch machine. Because the JCL remains resident

for the duration of the session, be aware that you have reduced the number of

available initiators for other uses.

v The limitation of the C/S Server to 30 sessions.

v Each batch session must have a unique profile (just like each user ID).

v The PA1 key is not available within the GUI environment.

v Full-screen TPUT function is not supported.

v Because you are in batch mode, and therefore you are not using a TSO emulator,

GDDM is disabled and TSO line-mode output is not available.

Controlling ISPF sessions

40 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

v Other TSO batch limitations. Some commands might not be supported in GUI

Batch mode because of the inability to provide terminal input to them (such as

RECEIVE). See the z/OS TSO/E User’s Guide for more information about running

TSO in batch mode.

Example JCL: invoking client/server in batch mode

The JCL job that follows can be run from your MVS session to invoke ISPF

running the Client/Server in batch mode. Before submitting this JCL job, you must

update it with this information:

v The jobcard information in line 1 must be furnished, and a unique jobname must

be used.

v Update ″userid.PRIVATE″ with your private libraries, if needed. If you do not

use private libraries, remove those data sets from the concatenation.

v If your ISPF product data sets are not named ″ISP.SISxxxx″, update the data set

names.

v Update the TSO profile.

v Update the ISPSTART invocation with the session title.

v Update the GUI() keyword for either TCPIP (your_ip_address) or APPC

(your_lu_name), and remove the other keyword.

//userid0 your jobcard information here

//* JCL TO RUN ISPF IN BATCH

//WSGUI EXEC PGM=IKJEFT01,REGION=4096K,TIME=1439,DYNAMNBR=200

//STEPLIB DD DSN=ISP.SISPLPA,DISP=SHR

// DD DSN=ISP.SISPLOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=CEE.SCEERUN2,DISP=SHR

// DD DSN=userid.PRIVATE.LOAD,DISP=SHR

//ISPLLIB DD DSN=ISP.SISPLPA,DISP=SHR

// DD DSN=ISP.SISPLOAD,DISP=SHR

// DD DSN=CEE.SCEERUN,DISP=SHR

// DD DSN=CEE.SCEERUN2,DISP=SHR

// DD DSN=userid.PRIVATE.LOAD,DISP=SHR

//SYSEXEC DD DSN=userid.PRIVATE.EXEC,DISP=SHR

// DD DSN=ISP.SISPEXEC,DISP=SHR

//SYSPROC DD DSN=userid.PRIVATE.CLIST,DISP=SHR

// DD DSN=ISP.SISPCLIB,DISP=SHR

//ISPMLIB DD DSN=userid.PRIVATE.MSGS,DISP=SHR

// DD DSN=ISP.SISPMENU,DISP=SHR

//ISPPLIB DD DSN=userid.PRIVATE.PANELS,DISP=SHR

// DD DSN=ISP.SISPPENU,DISP=SHR

//ISPSLIB DD DSN=userid.PRIVATE.SKELS,DISP=SHR

// DD DSN=ISP.SISPSLIB,DISP=SHR

// DD DSN=ISP.SISPSENU,DISP=SHR

//SYSIN DD DUMMY,DCB=(LRECL=120,BLKSIZE=2400,DSORG=PS,RECFM=FB)

//SYSUADS DD DSN=SYS1.UADS,DISP=SHR

//SYSHELP DD DSN=SYS1.HELP,DISP=SHR

Figure 13. Invoking client/server in batch mode (Part 1 of 2)

Controlling ISPF sessions

Chapter 2. Controlling ISPF sessions 41

//ISPCTL0 DD UNIT=SYSDA,

// SPACE=(TRK,(5,5)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160),

// DISP=(,DELETE,DELETE)

//ISPCTL1 DD UNIT=SYSDA,

// SPACE=(TRK,(5,5)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160),

// DISP=(,DELETE,DELETE)

//ISPCTL2 DD UNIT=SYSDA,

// SPACE=(TRK,(5,5)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=6160),

// DISP=(,DELETE,DELETE)

//ISPWRK0 DD UNIT=SYSDA,

// SPACE=(TRK,(5,5)),

// DCB=(RECFM=FB,LRECL=256,BLKSIZE=2560),

// DISP=(,DELETE,DELETE)

//ISPWRK1 DD UNIT=SYSDA,

// SPACE=(TRK,(5,5)),

// DCB=(RECFM=FB,LRECL=256,BLKSIZE=2560),

// DISP=(,DELETE,DELETE)

//ISPWRK2 DD UNIT=SYSDA,

// SPACE=(TRK,(5,5)),

// DCB=(RECFM=FB,LRECL=256,BLKSIZE=2560),

// DISP=(,DELETE,DELETE)

//ISPLST0 DD UNIT=SYSDA,

// SPACE=(TRK,(5,5)),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210),

// DISP=(,DELETE,DELETE)

//ISPLST1 DD UNIT=SYSDA,

// SPACE=(TRK,(5,5)),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210),

// DISP=(,DELETE,DELETE)

//ISPLST2 DD UNIT=SYSDA,

// SPACE=(TRK,(5,5)),

// DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210),

// DISP=(,DELETE,DELETE)

//ISPTABL DD DSN=userid.PRIVATE.TABLES,DISP=SHR

//ISPTLIB DD DSN=userid.PRIVATE.TABLES,DISP=SHR

// DD DSN=ISP.SISPTENU,DISP=SHR

//SYSUDUMP DD DUMMY

//ISPLOG DD SYSOUT=T,

// DCB=(RECFM=VA,LRECL=125,BLKSIZE=129)

//ISPPROF DD DSN=userid.PRIVATE.TABLES,DISP=SHR

//SYSTSPRT DD DSN=userid.PRIVATE.TSOOUT,DISP=SHR

//*SYSTSPRT DD SYSOUT=(*)

//SYSPRINT DD SYSOUT=(*)

//SYSOUT DD SYSOUT=(*)

//SYSTSIN DD *

 PROFILE PREFIX(profile)

 PROFILE NOPROMPT

 ISPSTART PANEL(ISR@PRIM) NEWAPPL(ISR) TITLE(your_session_title) +

 GUI(IP:your_ip_address) or GUI(LU:your_lu_name)

Figure 13. Invoking client/server in batch mode (Part 2 of 2)

Controlling ISPF sessions

42 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 3. Introduction to writing dialogs

This topic introduces you to how to write dialogs using the ISPF display, variable,

table, file-tailoring, PDF, and other miscellaneous services. For more detailed

information on using these services, refer to the z/OS ISPF Services Guide.

You can use the ISPDPTRC command to trace both the execution of panel service

calls (DISPLAY, TBDISPL, and TBQUERY) and the processing that occurs within

the Dialog Manager panel code. For more information, refer to “Panel trace

command (ISPDPTRC)” on page 367.

Using the display services

The display services allow a dialog to display information and interpret responses

from users. The display services are:

ADDPOP Start pop-up window mode. The ADDPOP service specifies that

the listed panel displays are to be in a pop-up window. It also

identifies the location of the pop-up window on the screen in

relation to the underlying panel or window.

DISPLAY Display a panel. The DISPLAY service reads a panel definition

from the panel files, initializes variable information in the panel

from the corresponding dialog variables in the function, shared, or

profile variable pools, and displays the panel on the screen.

Optionally, the DISPLAY service might superimpose a message on

the display.

 After the user has entered information on the panel, the

information is stored in the corresponding dialog variables in the

function, shared, or profile variable pools, and the DISPLAY service

returns control to the calling function.

 The COMMAND option on the DISPLAY service allows a dialog to

pass a chain of commands to ISPF for execution. This option is

explained fully in the z/OS ISPF Services Guide. Use of the DISPLAY

service is illustrated in a function example later.

LIBDEF Define optional search libraries. The LIBDEF service allows users

to define an optional, application-level set of libraries containing,

for example, messages or panels, to be searched before the

IBM-supplied ISPF libraries. See the z/OS ISPF Services Guide for

more information.

REMPOP Remove a pop-up window. The REMPOP service call removes a

pop-up window from the screen.

SELECT Select a panel or function. The SELECT service is used to display a

hierarchy of selection panels or invoke a function.

SETMSG Display a message on the next panel. The SETMSG service

constructs a specified message from the message file in an ISPF

system save area. The message will be superimposed on the next

panel displayed by any DM service. The optional COND

parameter allows you to specify that the message is to be

displayed on the next panel only if there is no SETMSG request

pending.

© Copyright IBM Corp. 1980, 2007 43

TBDISPL Display a table. The TBDISPL service combines information from

panel definitions with information stored in ISPF tables. It displays

selected rows from a table, and allows the user to identify rows for

processing.

 Panel definitions used by the TBDISPL service contain

nonscrollable text, including column headings, followed by one or

more “model lines” that specify how each row from the table is to

be formatted in the scrollable area of the display. For more

information about TBDISPL, see “Defining table display panels” on

page 133 and the description of the TBDISPL service in z/OS ISPF

Services Guide.

Example: creating a display with TBDISPL

The TBDISPL service displays information from an ISPF table on a panel formatted

by information on a panel definition. Table 1 illustrates an ISPF table named TAB1.

 Table 1. TBDISPL – ISPF table

RANK ID CITY STATE POPCH ROW

1 FLO621 Fort Myers fl +95.1 r1

2 NV1235 Las Vegas nv +69.0 r2

3 FL1972 Sarasota fl +68.0 r3

4 COO649 Fort Collins co +66.0 r4

5 FL2337 West Palm Beach fl +64.3 r5

6 FLO608 Fort Lauderdale fl +63.6 r6

7 TXO231 Bryan tx +61.5 r7

8 NV1833 Reno nv +60.0 r8

9 UT1656 Provo ut +58.4 r9

10 TX1321 McAllen tx +56.1 r10

Figure 14 illustrates a panel definition named PAN1.

**

*)Attr *

* @ Type(output) Intens(low) Just(asis) Caps(off) *

*)Body *

* -------------------- Population Change ----------------- * ---┐

* +Command ==>Cmdfld +Scroll ==>_samt+ * |

* + * |

* This table shows selected metropolitan areas which had a * |---> (A,Figure 15)

* * |

* large relative increase in population from 1970 to 1980. * |

* * |

* +Metro area State Change * |

* + (Percent) * ---┘

*)Model *

* @City @State @popchg+ * -------> (B,Figure 15)

* *

*)Init *

* &samt=page *

*)Proc *

*)End *

**

Figure 14. TBDISPL panel definition

Display Services

44 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

The)BODY section of PAN1 defines the fixed portion of the display, area “A” in

Figure 14 on page 44. The)MODEL section of PAN1 produces the scrollable

portion of the display, area “B” in Figure 14 on page 44.

There can be up to eight model lines. Panel PAN1 has only one. The scrollable

portion of the display is formed by replicating the model lines to fill the screen.

Each of these replications, as well as the original, is known as a model set. Each

model set corresponds to a table row. Table rows are then read to fill in the

appropriate fields in the model set replications.

PAN1 displays only three (city, state, and popchg) of the five columns of table

TAB1. The model lines can include any number of the KEYS, NAMES, and

extension variables of the table. They can also include fields that are not variables

in the table. Figure 15 shows the effect of displaying information from TAB1 on

panel PAN1.

 When the TBDISPL service is invoked with the panel name specified, the scrollable

portion begins with the current row. That is, the current row is the top row

displayed. In this example, the current row pointer (CRP) for table TAB1 has been

set to row 4. Table rows are read starting with row 4 to fill in the appropriate fields

in the model set replications. If there were any non-table variables in the model

line, they would be filled in with their current values. Because there aren’t enough

rows in the table to fill the screen, the bottom-of-data marker is placed in the

display after the last row. The “empty” model sets beyond this marker are not

displayed.

In Table 1 on page 44, the symbols r1 through r10 label the 10 rows in the table

TAB1. The highlighted rows, r4 through r10, indicate that these rows provide the

information for the scrollable portion of the display (marked as area B in

Figure 15).

Figure 15 is the result of using the TBDISPL service with panel definition PAN1

(Figure 14 on page 44) and ISPF table TAB1 (Table 1 on page 44). Portion A is the

fixed portion defined by the)BODY section of PAN1. Portion B is the scrollable

portion defined by the)MODEL section of PAN1. The table information in the

display is the specified columns from row 4 to row 10.

 +---+

 +-------|------------------- Population Change ------ ROW 4 OF 10 |

 | | Command ==> Scroll ==> Page |

 | | |

 --(A)| |This table shows selected metropolitan areas which had a |

 | |large relative increase in population from 1970 to 1980. |

 | | |

 | | Metro area State Change |

 --------| (Percent) |

 +--r4-- | Fort Collins co +66.0 |

 | r5-- | West Palm Beach fl +64.3 |

 | r6-- | Fort Lauderdale fl +63.6 |

 --(B)| r7-- | Bryan tx +61.5 |

 | r8-- | Reno nv +60.0 |

 | r9-- | Provo ut +58.4 |

 | r10- | McAllen tx +56.1 |

 +-------|********************** BOTTOM OF DATA ****************** |

 | |

 +---+

Figure 15. TBDISPL display

Display Services

Chapter 3. Introduction to writing dialogs 45

Processing selected rows

When a user changes data in a model set, the corresponding table row is said to be

selected for processing. More than one row can be selected in a single interaction.

Before the TBDISPL service returns control to the dialog function, the CRP is

positioned to the first of the selected rows. First means the row closest to the top of

the table, not the row that was selected first. The other selected rows are called

pending selected rows.

Note: System command ZCLRSFLD causes a row to be selected if it is used on a

scrollable input field.

When the CRP is positioned at a selected row, the row is retrieved, meaning the

values from that row are stored in the appropriate dialog variables. Then, all input

fields in the selected model set on the display are stored in the corresponding

dialog variables. The dialog function can then process the row in any manner it

chooses. For example, the function can invoke the TBPUT service to update the

row, or it can invoke the BROWSE service to examine a file specified in that row.

A call of the TBDISPL service is required to position the CRP to each pending

selected row. For these calls, neither the PANEL nor MSG parameter should be

specified.

The system variable ZTDSELS contains the number of selected rows. It can be

tested by the dialog function or in the)PROC section of the table display panel to

determine if any rows were selected. For example:

)PROC

 . . . /* Process fixed portion fields */

 IF (&ZTDSELS ¬= 0000) /* Any selected rows? */

 . . . /* Process scrollable portion flds*/

)END

The interpretation of this variable is as follows:

0000 No selected rows

0001 One selected row (now the current row)

0002 Two selected rows, consisting of the current row and a pending selected

row

0003 Three selected rows, consisting of the current row and two pending

selected rows

...

n “n” selected rows, consisting of the current row and “n-1” pending

selected rows.

As TBDISPL is reinvoked without the PANEL and MSG parameters (to process any

pending selected rows), ZTDSELS is decremented by one. An example is shown in

Table 2.

 Table 2. ZTDSELS decrementation

DM Service User Action Value of ZTDSELS

TBDISPL TAB1

PANEL(PAN1)

Selects 3 rows 0003 (current row plus two pending selected rows)

TBDISPL TAB1 None 0002 (current row plus one pending selected row)

Display Services

46 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Table 2. ZTDSELS decrementation (continued)

DM Service User Action Value of ZTDSELS

TBDISPL TAB1 None 0001 (current row; no pending selected rows)

Adding table rows dynamically during table display scrolling

Assume that you have access to a large amount of related data that might be built

into a single table. However, you need to interface with only a subset of that data

during an ISPF session, but you are not sure just how extensive that subset is.

Normally, you would have to initially construct a table that included all possible

data that you might wish to access during a session before you began scrolling and

update activity on the table. This could lead to a great deal of unnecessary

overhead because you might include a lot of data in your table that you never

access.

By interacting with a set of function system variables, an ISPF function can

dynamically expand the table as you scroll through it during a session. The

function can specify that the table is to be expanded upward when the user has

scrolled past the top, expanded downward when the user has scrolled past the

bottom, or both. In this way, the function adds only the table rows that satisfy

your needs as you need them.

System variables are the ISPF-function interface

Eight system variables in the function pool are the vehicle for passing, between

ISPF and the function, values that control table expansion. These variables and the

functions they perform are:

ZTDRET (input; length 8)

The function sets variable ZTDRET in the function pool to a value (UP,

DOWN, or VERTICAL) that indicates to ISPF when control is to return to

the function so that more rows can be added to the table being processed.

ZTDADD (output; length 3)

ISPF sets this variable to either YES or NO before returning control to the

function. A value of YES indicates that the function needs to add more

rows to the table being processed. ZTDADD is normally set to NO,

indicating that no more rows need to be added to the table.

ZTDSCRP (input/output; length 6)

This variable is set to the row pointer (number of the row relative to the

top of the table) of the row that is to be at the top of the panel’s scrollable

area after the scroll request is processed. If ISPF cannot determine this

value, this variable is set to zero.

ZTDSRID (output; length 6)

ISPF sets this variable to the row ID of the row pointed to by the value in

variable ZTDSCRP. During table processing, the row pointer value for a

given row can change. However, the row ID of that row does not change.

ZTDAMT (output; length 4)

When ISPF returns control to the function with the value of variable

ZTDADD set to YES, the value that ISPF has set in variable ZTDAMT tells

the function how many rows, based on the information available, ISPF

calculates should be added to the table to satisfy the current scroll request.

ZTDSIZE (output; length 4)

ISPF sets the value of ZTDSIZE to the total number of model sets; that is,

Display Services

Chapter 3. Introduction to writing dialogs 47

the number of table rows that fill the scrollable area of the panel. This is

not necessarily the same as the number of lines displayed in the panel’s

scrollable area.

ZTDLTOP (input; length 6)

The function can optionally set this variable to a value for ISPF to use in

calculating the value x (top-row-displayed) in the indicator ’ROW x OF y’,

which ISPF displays on a TBDISPL screen.

ZTDLROWS (input; length 6)

The function can optionally set this variable to a value for ISPF to use as

the value y (total rows in the logical table) in the indicator ’ROW x OF y’.

You can define variables ZTDAMT, ZTDSCRP, ZTDSRID, ZTDSIZE, ZTDLTOP, and

ZTDLROWS as fullword fixed binary in a program function. If you do not, the

default for each of these variables is character with lengths as specified in the

system variable charts in the Appendix E, “System variables,” on page 405.

Dynamic table building: To put the dynamic table building concept into practice,

a function first builds a basic table structure. The initial size of this table is

determined by balancing the minimum amount of table data that would satisfy

most anticipated user needs against the overhead of including a large amount of

table data to cover more contingencies. As more table rows are needed to satisfy

scroll requests, ISPF returns control to the function so that it can add those rows.

When a user issues a scroll request, there might be input fields in a panel that

have been typed into (selected for processing). In that case, the dialog first

processes all selected rows and then issues a TBDISPL request, without panel

name, to cause the panel to redisplay. If no table rows are needed to fill the scroll

request, ISPF completes the scroll and redisplays the panel. If more table rows are

needed to fill the scroll request, ISPF returns control to the function to add table

rows. Keep in mind that each time control returns to the function, the)PROC

section of the panel from which the table display was requested is executed. After

adding the table rows, the function issues a TBDISPL without a panel name to

complete the scroll and redisplay. Remember, specifying a panel name on a

TBDISPL request nullifies any pending selected rows or request for scrolling.

The values of a set of system variables in the function pool are the parameters

used in the interchange between ISPF and a function when dynamically increasing

the table size.

Using variable ZTDRET

The need for expanding a table occurs when a user scrolls beyond the top or

bottom of the table while using the TBDISPL service. The function must set

variable ZTDRET to a value that tells ISPF when to return control so the function

can expand the table. The function sets ZTDRET to one of three possible values:

UP Control returns to the function when the top of the scrollable data

is reached. This applies when you are building the table upward

from the bottom. The value UP has no effect when the bottom of

the scrollable data is reached.

DOWN Control returns to the function when the bottom of scrollable data

is reached. This applies when you are building the table

downward from the top. The value DOWN has no effect when the

top of the scrollable data is reached.

VERTICAL Control returns to the function when the top or bottom of the

scrollable data is reached.

Display Services

48 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

The value in ZTDRET must be left-justified (no leading blanks). ISPF evaluates the

value of ZTDRET only when the function issues a TBDISPL request with a panel

name specified. This is true, even though in the interim, the function might change

the value of ZTDRET and issue TBDISPL requests without a panel name specified.

A TBDISPL request with a panel name specified also nullifies processing of any

pending selected table rows and any pending scroll request.

When a scroll request is pending, a TBDISPL request with a message ID specified

(but without a panel name specified) causes the panel to be redisplayed with the

message, but the scroll request is nullified.

Using variable ZTDADD

Before returning control to a function from a TBDISPL request, ISPF sets function

variable ZTDADD to YES or NO, indicating to the function whether rows are to be

added to the table. The function normally receives a return code of 0 from the

TBDISPL service. It can then interrogate variable ZTDADD. If its value is ’YES’,

then ZTDSCRP, ZTDSRID, ZTDAMT, and ZTDSIZE contain valid values.

ISPF normally returns control to the function for reasons other than to add table

rows. In those cases, ISPF sets the value of ZTDADD to NO. For example, the

function might need to interact with table rows that have been selected for

processing during a table display.

Using variable ZTDAMT

When ISPF returns control to a function with variable ZTDADD set to YES, the

function must add rows to the table. If rows must be added to the table to satisfy a

scroll request, ISPF calculates, when possible, the number of rows that need to be

added to the table and returns that value to the function in variable ZTDAMT. The

function should use this value for determining the number of rows to add.

For some scroll requests, such as UP MAX or DOWN MAX, ISPF cannot determine

the number of rows to be added to the table. In those cases, ISPF returns a value of

0 to the function in ZTDAMT.

Using variables ZTDSCRP and ZTDSRID

When ZTDSCRP contains a value other than 0, that value is the number of the

table row that is to be at the top of the panel’s scrollable area when the panel is

redisplayed. ISPF sets ZTDSCRP to a nonzero value if a user has requested a

downward scroll such that, when ISPF redisplays the panel following the scroll,

the top row displayed in the scrollable area existed in the table at the time of the

scroll request.

When the user requests an UP MAX or DOWN MAX, ISPF does not require the

ZTDSCRP value to position the table when it is redisplayed following the scroll. It

simply positions the table in the scrollable display area relative to the top table row

(UP MAX) or the bottom-of-data marker (DOWN MAX).

For other scroll requests that require that rows be added to the table, ISPF may not

be able to determine what the value of ZTDSCRP should be. In other words, one

of the table rows to be added by the function will be the new top row displayed.

ISPF has no way of knowing what the number of that row will be. In those cases,

ISPF returns a value of 0 to the function.

If a function receives a value of 0 in ZTDSCRP (other than for UP MAX or DOWN

MAX), it must set the variable’s value to the number of the new table row that

should display at the top of the panel’s scrollable area. When the function sets the

Display Services

Chapter 3. Introduction to writing dialogs 49

value of ZTDSCRP, the developer must take into account that the number specified

is the number of the top displayed table row relative to the top of the table as the

user who issued the scroll requests will see it. The developer must also take into

account any processing that takes place from the time the user requests a scroll to

the time the scroll is processed. For example, assume that variable ZTDRET is set

to UP. A user issues:

UP 10

but there are only eight table rows above the top one currently displayed. ISPF

returns control to the function with variable ZTDAMT having a value of 2,

indicating that two lines must be added to the table to satisfy the current scroll

request. ISPF has set variable ZTDSCRP to 0 because the new top displayed row

did not exist in the table when the scroll was requested. Assume that, instead of

adding only the two required table rows at the top of the table to satisfy this scroll

request, the function adds 20 rows as a cushion against additional scrolling.

Therefore, the function must set ZTDSCRP to 19 so that ISPF will redisplay the

panel with the table positioned as the user wants it.

In addition to the row pointer in variable ZTDSCRP, ISPF returns to the function in

variable ZTDSRID the identification (rowid) of the row that is to be displayed at

the top of the scrollable area. As just described for ZTDSCRP, if ISPF cannot

determine which is to be the top row displayed, it returns a value of 0 in

ZTDSRID.

Using variable ZTDSIZE

When ISPF returns control to the function to add more rows to a table, variable

ZTDSIZE contains the total number of table rows that can fit into the entire panel

scrollable area. Changes made to the panel structure, such as by PFSHOW ON or

split-screen mode, do not affect this value. The value is the total number of

scrollable area rows.

Using variables ZTDLTOP and ZTDLROWS

ISPF displays in the upper-right corner of a TBDISPL panel a default

top-row-displayed indicator, ’ROW x OF y’, where x is the current row pointer of

the top row displayed, and y is the total number of rows in the physical table

being displayed. By assigning a message ID to system variable ZTDMSG, a

function can specify a message whose short message text is to replace the

top-row-displayed indicator. However, keep in mind that in the text shown, all

references to the top-row-displayed indicator refer to the default supplied by ISPF,

not an alternate indicator specified by the application.

Because the dimensions of only the physical table are available, ISPF has no way of

assuring what the x and y values for the top-row-displayed indicator should be.

Therefore, it is the application’s responsibility to pass to ISPF the logical table

positioning in variables ZTDLTOP and ZTDLROWS, respectively, any time control

returns to the function to add table rows. If the function does not set these

variables to a value, ISPF calculates the x and y values according to the size and

position of the table being displayed.

For example, assume that, to satisfy scroll requests, an application adds records

dynamically to a table from a 1000-record file. The application initially builds the

table with records 500 through 520. To pass these values to ISPF for use as the x

and y values in the top-row-displayed indicator, the application function sets

ZTDLTOP to 500 and sets ZTDLROWS to 1000. This causes the indicator text

’ROW 500 OF 1000’ to be displayed initially on the TBDISPL panel. Then assume

Display Services

50 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

that the user scrolls down 10 rows. ISPF, using the value in ZTDLTOP plus the 10

rows scrolled, changes the indicator to ’ROW 510 OF 1000’.

In the example just described, assume that the user first scrolled up 10 rows

instead of down 10 rows. Because the top row displayed was the top table row,

control returns to the application function to add rows to the top of the table so

the scroll request can be completed. As mentioned, it is the application’s

responsibility to change the values of ZTDLTOP and ZTDLROWS as needed to

provide ISPF an accurate base for generating the top-row-displayed indicator.

Therefore, after adding rows to the top of the table, the function sets variable

ZTDLTOP to 490 before issuing the TBDISPL request to redisplay the table. The

text of the top-row-displayed indicator on the displayed panel is now ’ROW 490

OF 1000’.

Example: dynamic table expansion

This example illustrates how you can use dynamic expansion to reduce the initial

overhead of creating a large table for display.

Assume that you are given the task of creating an ISPF dialog that allows a user to

browse through a list of invoices for a given year. The list is maintained in a

sequential file. It contains information (such as invoice number, transaction date,

part number, quantity, and customer name) for each transaction made during the

year.

The file is fixed-block with a logical record length of 80 and a block size of 6160.

The first record in the file contains the year and the number of invoices that follow

in the file.

The format of this record is as follows:

Positions Format

1-4 Year

5-10 Number of invoices

11-80 Reserved

The format of each of the invoice records is as follows:

Positions Format

1-6 Invoice number

7-14 Transaction date (format mm/dd/yy)

15-18 Part number

19-21 Quantity (right justified)

22-46 Customer name (left justified)

47-80 Reserved

For example, the file might look something like this:

1986010000

00000101/06/867071100Acme Auto

00000201/06/860015 15Parts City

00000301/07/861023340Cary Auto Center

00000401/08/860231 1Parts Unlimited

00000501/08/863423805Bosworth’s Parts

00000601/08/862341165Acme Parts

00000701/08/867653 20Acme Parts

00000801/08/863353100Bosworth’s Parts

00000901/08/860003325Bosworth’s Parts

00001001/08/863322 1Bosworth’s Parts

Display Services

Chapter 3. Introduction to writing dialogs 51

...
00999912/15/860325 43ABC Parts

01000012/18/864234340ACME Parts

As you can see, the file is in no form to be browsed as it is. One way to implement

the dialog is to transfer the invoice file to a temporary ISPF table, and then display

the table with the TBDISPL service. However, since the number of invoices can be

relatively high (in this example, there are 10 000 invoices), the initial overhead of

reading every record and adding it to the table is unacceptable. As an alternative,

the dialog uses dynamic table expansion instead. Using this method, it adds only

the first 60 invoices to the table initially. Other invoices are added on an as-needed

basis as the user scrolls through the table. The user sees no evidence that only a

portion of the invoices are in the table.

Figure 16 shows the definition for panel INVPANEL, which the dialog uses to

display table rows.

 The PL/I dialog function, INVOICE (shown in Figure 17 on page 53), requires that

the invoice file be allocated to ddname INVFILE before the dialog is executed. The

intent of this example is to illustrate the dynamic expansion function. Normal error

checking and error processing is not shown, but should be included in all dialogs.

)Attr

 @ Type(Output) Intens(Low)

)Body Expand(//)

+-/-/-%&year TRANSACTIONS+-/-/-

%Command ====>_cmd %Scroll ===>_amt +

+

+

%Invoice Transaction Part

%Number Date Number Quantity Customer

%------- ----------- ------ -------- --------

)Model

@inv @date @part @qty @cust +

)Init

 &amt = PAGE

)End

Figure 16. Panel definition dynamic table expansion

Display Services

52 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

INVOICE: PROC OPTIONS(MAIN);

 /***/

 /* THIS PROGRAM ILLUSTRATES THE USE OF DYNAMIC EXPANSION WITH */

 /* THE TABLE DISPLAY SERVICE. THE PROGRAM READS RECORDS FROM A */

 /* SEQUENTIAL FILE CONTAINING A LIST OF INVOICES AND ADDS THE */

 /* INVOICE INFORMATION TO A TEMPORARY ISPF TABLE (INVTABLE). */

 /* THE TABLE IS THEN DISPLAYED SO THAT THE USER CAN BROWSE */

 /* THROUGH THE INVOICES. THE FOLLOWING STEPS ARE PERFORMED BY */

 /* THE PROGRAM: */

 /* */

 /* 1. DEFINE THE FUNCTION POOL VARIABLES FOR THE TEMPORARY */

 /* TABLE, THE TBDISPL SYSTEM VARIABLES, AND MISCELLANEOUS */

 /* VARIABLES. */

 /* */

 /* 2. ISSUE A TBCREATE SERVICE CALL FOR TEMPORARY TABLE, */

 /* INVTABLE. */

 /* */

 /* 3. OPEN FILE INVFILE AND READ THE HEADER RECORD INTO THE */

 /* HEADER_RECORD STRUCTURE. */

 /* */

 /* 4. READ EACH OF THE FIRST 60 INVOICE RECORDS FROM INVFILE */

 /* INTO THE INVOICE_RECORD STRUCTURE AND ADD THEM TO TABLE */

 /* INVTABLE. USE THE TBADD MULT PARAMETER TO OPTIMIZE */

 /* TBADD ROW STORAGE MANAGEMENT. */

 /* 5. ISSUE A TBTOP SERVICE CALL TO POSITION THE CRP AT THE */

 /* TOP OF INVTABLE. */

 /* 6. INITIALIZE SYSTEM VARIABLE ZTDRET TO "DOWN" */

 /* AND SYSTEM VARIABLE ZTDLROWS TO THE NUMBER OF INVOICES */

 /* IN THE FILE. */

 /* 7. ISSUE A TBDISPL SERVICE CALL THAT REFERS TO TABLE */

 /* INVTABLE AND PANEL INVPANEL. */

 /* 8. LOOP WHILE THE TBDISPL SERVICE RETURN CODE IS LESS THAN */

 /* 8 (WHILE THE USER HAS NOT ISSUED THE END COMMAND AND */

 /* WHILE THERE HAVE BEEN NO SEVERE ERRORS). ON RETURN */

 /* FROM THE TBDISPL SERVICE, DO THE FOLLOWING: */

 /* */

 /* - CHECK TO SEE IF ADDITIONAL ROWS ARE NEEDED TO */

 /* SATISFY A SCROLL REQUEST. */

 /* - IF ADDITIONAL ROWS ARE NEEDED, READ THE APPROPRIATE */

 /* NUMBER OF INVOICES FROM INVFILE AND ADD THEM TO */

 /* INVTABLE AGAIN USING THE TBADD MULT PARAMETER. */

 /* - IF NECESSARY, SET THE SYSTEM VARIABLE ZTDSCRP TO */

 /* THE CRP OF THE NEW TOP ROW. */

 /* - FINALLY, ISSUE A TBDISPL SERVICE CALL (WITHOUT A */

 /* PANEL NAME) TO REDISPLAY INVTABLE. */

 /* 9. PERFORM SOME FINAL CLEANUP BEFORE EXITING THE DIALOG: */

 /* */

 /* - ISSUE A TBEND SERVICE CALL TO CLOSE AND DELETE */

 /* INVTABLE. */

 /* - CLOSE INVFILE. */

 /* - ISSUE A VDELETE SERVICE CALL TO DELETE ALL FUNCTION */

 /* POOL VARIABLES CREATED BY THE DIALOG. */

 /***/

Figure 17. PL/I dialog function example program (Part 1 of 5)

Display Services

Chapter 3. Introduction to writing dialogs 53

DECLARE /* */

 1 HEADER_RECORD, /* HEADER RECORD FIELDS */

 3 YEAR CHAR(4), /* YEAR OF INVOICES */

 3 NUM_RECS CHAR(6), /* NUMBER OF INVOICES */

 3 FILLER CHAR(70); /* ** RESERVED ** */

 /* */

 DECLARE /* */

 1 INVOICE_RECORD, /* INVOICE RECORD FIELDS */

 3 INV CHAR(6), /* INVOICE NUMBER */

 3 DATE CHAR(8), /* TRANSACTION DATE */

 3 PART CHAR(4), /* PART NUMBER */

 3 QTY CHAR(3), /* QUANTITY */

 3 CUST CHAR(25), /* CUSTOMER NAME */

 3 FILLER CHAR(34), /* ** RESERVED ** */

 INVOICE_FORMAT (5) CHAR(8) /* FORMAT ARRAY FOR */

 INIT((5) (1)’CHAR ’), /* INVOICE_RECORD VDEF */

 INVOICE_LENGTH (5) FIXED BIN(31,0) /* LENGTH ARRAY FOR */

 INIT(6,8,4,3,25); /* INVOICE_RECORD VDEF */

 DECLARE /* */

 1 SCROLL_VARS, /* TBDISPL SCROLL FIELDS */

 3 ZSCROLLA CHAR(4), /* SCROLL AMOUNT */

 3 ZTDRET CHAR(8), /* RETURN ON EOD */

 3 ZTDSCRP FIXED BIN(31,0), /* TOP ROW CRP */

 3 ZTDAMT FIXED BIN(31,0), /* #ROWS TO ADD */

 3 ZTDSIZE FIXED BIN(31,0), /* SCROLLABLE AREA SIZE*/

 3 ZTDLROWS FIXED BIN(31,0), /* #ROWS IN LOGICAL TBL*/

 3 ZTDADD CHAR(3), /* NEED TO ADD ROWS? */

 SCROLL_FORMAT (7) CHAR(8) /* FORMAT ARRAY FOR */

 INIT((2) (1)’CHAR ’, /* SCROLL_VARS VDEFINE */

 (4) (1)’FIXED ’, /* */

 ’CHAR ’), /* */

 SCROLL_LENGTH (7) FIXED BIN(31,0) /* LENGTH ARRAY FOR */

 INIT(4,8,4,4,4,4,3); /* SCROLL_VARS VDEFINE */

 /* */

 DECLARE /* */

 I FIXED BIN(31,0), /* WORK INDEX */

 L4 FIXED BIN(31,0), /* VDEFINE LENGTH PARM */

 TBDISPL_RC FIXED BIN(31,0), /* TBDISPL RETURN CODE */

 BOTTOM FIXED BIN(31,0), /* CRP OF BOTTOM ROW */

 NEW_BOTTOM FIXED BIN(31,0), /* CRP OF NEW BOTTOM ROW */

 REQUESTED_TOP FIXED BIN(31,0), /* TOP ROW REQUESTED BY */

 /* END USER SCROLL */

 ADD_NUMBER FIXED BIN(31,0); /* #ROWS TO ADD */

 /* */

 DECLARE /* */

 MIN BUILTIN, /* PL/I BUILTIN */

 PLIRETV BUILTIN, /* FUNCTIONS */

 ISPLINK EXTERNAL ENTRY /* ISPF SERVICE */

 OPTIONS(ASM INTER RETCODE); /* INTERFACE */

 /* */

 DECLARE /* */

 INVFILE FILE INPUT RECORD SEQUENTIAL /* INVOICE FILE */

 ENV(FB BLKSIZE(6160) RECSIZE(80)); /* */

 /* */

Figure 17. PL/I dialog function example program (Part 2 of 5)

Display Services

54 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

/***/

 /* */

 /* ISSUE VDEFINE SERVICE CALLS TO DEFINE THE TABLE VARIABLES, */

 /* SCROLL SYSTEM VARIABLES, AND OTHER MISCELLANEOUS FIELDS TO */

 /* ISPF. */

 /* */

 /***/

 /* */

 CALL ISPLINK(’VDEFINE ’, /* DEFINE TABLE VARS */

 ’(INV DATE PART QTY CUST)’, /* */

 INVOICE_RECORD, /* */

 INVOICE_FORMAT, /* */

 INVOICE_LENGTH, /* */

 ’LIST ’); /* */

 /* */

 CALL ISPLINK(’VDEFINE ’, /* DEFINE SCROLL VARS */

 ’(ZSCROLLA ZTDRET ZTDSCRP ZTDAMT ZTDSIZE ZTDLROWS ZTDADD)’,

 SCROLL_VARS, /* */

 SCROLL_FORMAT, /* */

 SCROLL_LENGTH, /* */

 ’LIST ’); /* */

 L4 = 4; /* */

 CALL ISPLINK(’VDEFINE ’, /* DEFINE BOTTOM ROW CRP */

 ’(BOTTOM)’, /* */

 BOTTOM, /* */

 ’FIXED ’, /* */

 L4); /* */

 /* */

 CALL ISPLINK(’VDEFINE ’, /* DEFINE PANEL VAR YEAR */

 ’(YEAR)’, /* */

 YEAR, /* */

 ’CHAR ’, /* */

 L4); /* */

 /* */

 /***/

 /* */

 /* ISSUE TBCREATE SERVICE CALL TO CREATE TEMPORARY TABLE */

 /* INVTABLE. MAKE EACH OF THE TABLE VARIABLES NAME VARIABLES. */

 /* */

 /***/

 /* */

 CALL ISPLINK(’TBCREATE’, /* */

 ’INVTABLE’, /* */

 ’ ’, /* */

 ’(INV DATE PART QTY CUST)’); /* */

 /* */

 /***/

 /* */

 /* OPEN FILE INVFILE AND READ THE HEADER RECORD. */

 /* */

 /***/

 /* */

 OPEN FILE(INVFILE); /* OPEN INVOICE FILE */

 READ FILE(INVFILE) /* READ HEADER RECORD */

 INTO(HEADER_RECORD); /* */

 /* */

Figure 17. PL/I dialog function example program (Part 3 of 5)

Display Services

Chapter 3. Introduction to writing dialogs 55

/***/

 /* */

 /* READ THE FIRST 60 RECORDS FROM INVFILE, ADDING EACH TO THE */

 /* TABLE. */

 /* */

 /***/

 /* */

 ADD_NUMBER = 60; /* */

 DO I = 1 TO ADD_NUMBER; /* */

 READ FILE(INVFILE) /* READ NEXT RECORD */

 INTO(INVOICE_RECORD); /* */

 CALL ISPLINK(’TBADD ’, /* ADD INVOICE TO TABLE */

 ’INVTABLE’, /* */

 ’ ’, /* */

 ’ ’, /* */

 ADD_NUMBER); /* */

 END; /* */

 /* */

 /***/

 /* */

 /* SKIP BACK TO THE TABLE TOP, INITIALIZE THE ZTDRET AND */

 /* ZTDLROWS SYSTEM VARIABLES, AND ISSUE A TBDISPL SERVICE CALL */

 /* TO DISPLAY THE TABLE. */

 /* */

 /***/

 /* */

 CALL ISPLINK(’TBTOP ’, /* SKIP TO TABLE TOP */

 ’INVTABLE’); /* */

 ZTDRET = ’DOWN ’; /* RETURN ON BOTTOM OF */

 /* DATA */

 ZTDLROWS = NUM_RECS; /* SET LOGICAL #ROWS */

 CALL ISPLINK(’TBDISPL ’, /* PUT UP TABLE */

 ’INVTABLE’, /* */

 ’INVPANEL’); /* */

 TBDISPL_RC = PLIRETV(); /* */

 /* */

 /***/

 /* */

 /* LOOP WHILE USER HAS NOT ISSUED THE END COMMAND, CHECK TO */

 /* SEE IF ADDITIONAL ROWS ARE NEEDED TO SATISFY SCROLL, ADD ROWS */

 /* IF APPROPRIATE, AND THEN REDISPLAY TABLE. */

 /* */

 /***/

 /* */

 DO WHILE(TBDISPL_RC < 8); /* LOOP WHILE NOT END */

 IF ZTDADD = ’YES’ THEN /* NEED TO ADD ROWS? */

 DO; /* */

 /* */

 CALL ISPLINK(’VGET ’, /* CHECK TO SEE IF MAX */

 ’(ZSCROLLA)’, /* SCROLL */

 ’SHARED ’); /* */

 IF ZSCROLLA = ’MAX’ THEN /* IF SO, ADD ALL */

 ZTDAMT = 999999; /* REMAINING INVOICES */

 ELSE; /* ELSE, ADD ZTDAMT ROWS*/

 /* */

 CALL ISPLINK(’TBBOTTOM’, /* SKIP TO TABLE BOTTOM */

 ’INVTABLE’, /* TO ADD ROWS */

 ’ ’, /* */

 ’ ’, /* */

 ’ ’, /* */

 ’BOTTOM ’); /* SAVE CRP OF BOTTOM */

 /* */

Figure 17. PL/I dialog function example program (Part 4 of 5)

Display Services

56 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Now, assume that a user is running the invoice dialog on a terminal with 24 lines.

The initial display of the table is shown in Figure 18 on page 58.

 ADD_NUMBER = MIN(ZTDAMT, /* ADD ZTDAMT ROWS OR */

 ZTDLROWS-BOTTOM); /* UNTIL INVFILE EOF */

 DO I = 1 TO ADD_NUMBER; /* */

 /* */

 READ FILE(INVFILE) /* READ RECORD */

 INTO(INVOICE_RECORD); /* */

 /* */

 CALL ISPLINK(’TBADD ’, /* ADD IT TO TABLE */

 ’INVTABLE’, /* */

 ’ ’, /* */

 ’ ’, /* */

 ADD_NUMBER); /* */

 END; /* */

 IF ZSCROLLA ¬= ’MAX’ THEN /* IF NOT MAX SCROLL, */

 IF ZTDSCRP = 0 THEN /* MAY NEED TO SET */

 DO; /* ZTDSCRP */

 /* */

 NEW_BOTTOM = BOTTOM + /* CALCULATE NEW BOTTOM */

 ADD_NUMBER; /* */

 REQUESTED_TOP = BOTTOM + /* CALCULATE TOP ROW */

 ZTDAMT - ZTDSIZE + 1; /* REQUESTED BY SCROLL */

 /* */

 IF NEW_BOTTOM < /* IF REACH EOF BEFORE */

 REQUESTED_TOP THEN /* REACHING TOP ROW */

 /* REQUESTED, DISPLAY */

 ZTDSCRP = NEW_BOTTOM + 1; /* ONLY BOTTOM OF */

 /* DATA MARKER */

 ELSE /* ELSE */

 ZTDSCRP = REQUESTED_TOP; /* ADDED REQUESTED */

 /* TOP, SET ZTDSCRP */

 /* TO NEW TOP ROW */

 END; /* */

 ELSE; /* NO NEED TO SET */

 ELSE; /* ZTDSCRP */

 /* */

 END; /* */

 ELSE; /* DON’T NEED TO ADD ROWS*/

 /* */

 CALL ISPLINK(’TBDISPL ’, /* REDISPLAY TABLE */

 ’INVTABLE’); /* */

 TBDISPL_RC = PLIRETV(); /* */

 END; /* */

 /* */

 /***/

 /* */

 /* PERFORM FINAL CLEANUP. */

 /* */

 /***/

 /* */

 CALL ISPLINK(’TBEND ’, /* CLOSE AND DELETE */

 ’INVTABLE’); /* TABLE */

 CLOSE FILE(INVFILE); /* CLOSE INVOICE FILE */

 CALL ISPLINK(’VDELETE ’, /* DELETE FUNCTION POOL */

 ’* ’); /* VARIABLES */

 /* */

 RETURN (0); /* */

 END INVOICE; /* */

Figure 17. PL/I dialog function example program (Part 5 of 5)

Display Services

Chapter 3. Introduction to writing dialogs 57

Notice that even though the table actually contains only 60 rows, the top row

displayed indicator shows “ROW 1 OF 10000”. This was accomplished by setting

the ZTDLROWS variable in the function pool to a value of 10 000. TBDISPL will

pick up this value and use it when ZTDRET has been properly set.

Assume that the user enters the command “DOWN 50” on the command line. This

should result in rows 51-67 being displayed. Remember though that only rows 1-60

are currently in the table. Because there are not enough rows in the table to fill the

screen, control will return to function INVOICE. Upon return from TBDISPL, the

system variables used by the dialog have these values:

 ZSCROLLA 0050

ZTDADD YES

ZTDSCRP 51

ZTDAMT 7

ZTDSIZE 17

ZTDAMT contains the number of rows that must be added to satisfy the scroll

request and fill a full screen. ZTDSCRP has the CRP of the row that will be at the

top of the screen after the scroll. Because it is nonzero, function INVOICE does not

need to set it. In fact, all that the function has to do is skip to the table bottom,

read and add the next 7 invoices to the table, and then issue a TBDISPL service

request to redisplay the table. When the table is displayed again, it appears as

shown in Figure 19 on page 59.

 ------------------------------ 1986 TRANSACTIONS ------ ROW 1 OF 10000

 Command ====> Scroll ===> PAGE

 Invoice Transaction Part Quantity Customer

 Number Date Number

 ------- ----------- ------ -------- --------

 0000001 01/06/86 7071 100 Acme Parts

 0000002 01/06/86 0015 15 Parts City

 0000003 01/07/86 1023 340 Cary Auto Center

 0000004 01/08/86 0231 1 Parts Unlimited

 0000005 01/08/86 3423 805 Bosworth’s Parts

 0000006 01/08/86 2341 165 Acme Parts

 0000007 01/08/86 7653 20 Acme Parts

 0000008 01/08/86 3353 100 Bosworth’s Parts

 0000009 01/08/86 0003 325 Bosworth’s Parts

 0000010 01/08/86 3322 1 Bosworth’s Parts

 0000011 01/10/86 2344 23 Parts Unlimited

 0000012 01/10/86 4333 55 Cary Auto Center

 0000013 01/10/86 3079 65 Parts Company of NC

 0000014 01/10/86 4763 340 Cary Auto Center

 0000015 01/10/86 0956 70 Cary Auto Center

 0000016 01/10/86 4536 52 ABC Parts

 0000017 01/10/86 0973 330 ABC Parts

Figure 18. Initial display for dynamic table expansion example

Display Services

58 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Now assume that the user runs the command DOWN 5000:

This should result in rows 5051-5067 being displayed. As before, there are not

enough rows in the table to handle the scroll request, so control returns to function

INVOICE with this information in the system variables:

 ZSCROLLA 5000

ZTDADD YES

ZTDSCRP 0

ZTDAMT 5000

ZTDSIZE 17

Notice that this time ZTDSCRP has a value of 0. This indicates that the new top

row, as requested by the user scroll, is not in the physical table. After adding the

5000 rows indicated by the ZTDAMT system variable, function INVOICE must set

ZTDSCRP to the CRP of the row that should be displayed at the top after the scroll

(row 5051). This is accomplished in the dialog by adding ZTDAMT to the number

of rows in the current table, and then subtracting out the size of the scrollable area

(ZTDSIZE). When the table is redisplayed, it appears as shown in Figure 20 on

page 60.

 ------------------------------ 1986 TRANSACTIONS ------ ROW 51 OF 10000

 Command ====> Scroll ===> PAGE

 Invoice Transaction Part Quantity Customer

 Number Date Number

 ------- ----------- ------ -------- --------

 0000051 01/15/86 7536 6 Parts Unlimited

 0000052 01/15/86 0546 54 ABC Parts

 0000053 01/15/86 3349 65 Parts Company of NC

 0000054 01/15/86 4234 340 Cary Auto Center

 0000055 01/15/86 0342 70 Cary Auto Center

 0000056 01/18/86 4544 52 ABC Parts

 0000057 01/19/86 0763 330 Cary Auto Parts

 0000058 01/19/86 0841 540 Bosworth’s Parts

 0000059 01/19/86 0445 560 ABC Parts

 0000060 01/19/86 4542 450 ACME Parts

 0000061 01/25/86 7071 100 Acme Parts

 0000062 01/25/86 0015 15 Parts City

 0000063 02/27/86 1023 340 Cary Auto Center

 0000064 02/04/86 0231 1 Parts Unlimited

 0000065 02/04/86 3423 805 Bosworth’s Parts

 0000066 02/04/86 2341 165 Acme Parts

 0000067 02/04/86 7653 20 Acme Parts

Figure 19. Second display for dynamic table expansion example

Display Services

Chapter 3. Introduction to writing dialogs 59

Finally, assume that the user runs the command DOWN 5000: A scroll of 5000 would

display rows 10051-10067, if there were that many invoices in the file. However,

because there are only 10 000 invoices, function INVOICE can add only rows

5068-10000 to the table and then redisplay the table. On return from TBDISPL, the

system variables again contain this information:

 ZSCROLLA 5000

ZTDADD YES

ZTDSCRP 0

ZTDAMT 5000

ZTDSIZE 17

After adding all of the invoices to the table (end of file is reached), the dialog must

set system variable ZTDSCRP. Because the scroll amount has caused the user to

scroll past the end of data, the dialog sets ZTDSCRP to a value that will cause only

the bottom of data marker to be displayed. That is, ZTDSCRP is set to a value

greater than the number of rows in the table. When the table is redisplayed it

appears as shown in Figure 21 on page 61.

 ------------------------------ 1986 TRANSACTIONS ------ ROW 5051 OF 10000

 Command ====> Scroll ===> PAGE

 Invoice Transaction Part Quantity Customer

 Number Date Number

 ------- ----------- ------ -------- --------

 0005051 07/12/86 7326 436 Parts Unlimited

 0005052 07/12/86 0516 54 ABC Parts

 0005053 07/21/86 3549 5 Parts Company of NC

 0005054 07/24/86 4243 350 Cary Auto Center

 0005055 07/25/86 0342 540 Cary Auto Center

 0005056 07/31/86 4544 444 ABC Parts

 0005057 07/11/86 0653 30 Cary Auto Parts

 0005058 08/29/86 0821 450 Bosworth’s Parts

 0005059 08/01/86 6445 460 ABC Parts

 0005060 08/01/86 4942 850 ACME Parts

 0005061 08/01/86 7021 180 Acme Parts

 0005062 08/01/86 6026 945 Parts City

 0005063 08/07/86 1523 30 Cary Auto Center

 0005064 08/07/86 0531 451 Parts Unlimited

 0000065 08/07/86 3263 455 Bosworth’s Parts

 0005066 08/07/86 2771 5 Acme Parts

 0005067 08/07/86 7453 576 Acme Parts

Figure 20. Third display for dynamic table expansion example

Display Services

60 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

One case not illustrated is that of the user issuing a DOWN MAX scroll request. In

this case ZTDAMT and ZTDSCRP would each have a value of 0 when control

returns to the dialog. ZSCROLLA would have a value of MAX. The dialog would

add all remaining invoices to the table and then redisplay the table. It is not

necessary in a MAX scroll case to set ZTDSCRP before redisplaying the table

because ISPF automatically positions the table so that a full screen plus the bottom

of data marker are displayed.

In this example the program has been written so that control continues to return to

the dialog after all of the invoice file records have been added to the table. To

further improve performance, it may be desirable for the dialog to disable the

return after the end of file has been reached. This can be done by setting the

ZTDRET function pool variable to some value other than DOWN, UP, or

VERTICAL, and then issuing a TBDISPL service request with the panel name

specified. Be aware that when a panel name is specified, ISPF clears any pending

scroll requests. So it is up to the dialog to position the table CRP to the appropriate

row to simulate the scroll. For example, assume that a DOWN MAX scroll request

has been issued and the dialog has added all remaining invoices to the table. The

dialog then sets ZTDRET to blank and prepares to issue the TBDISPL service

request, with a panel name, to display the table. To simulate the user scroll the

dialog issues a TBSKIP service request to position the CRP to the row that will

cause a full screen plus the bottom of data marker to be displayed. When the

TBDISPL request is subsequently issued, ISPF will position the table based on the

CRP, thereby simulating the scroll.

Using the variable services

Dialog variables are the main communication vehicle between the components of a

dialog and ISPF services. Program modules, command procedures, panels,

messages, tables, and skeletons can all refer to the same data through the use of

dialog variables. Variable services allow you to define and use dialog variables.

Some variable services require that ISPF search through the variable pools to locate

requested variables. ISPF searches the pools in this order:

 ------------------------------ 1986 TRANSACTIONS ---------------------

 Command ====> Scroll ===> PAGE

 Invoice Transaction Part Quantity Customer

 Number Date Number

 ------- ----------- ------ -------- --------

 ****************************** BOTTOM OF DATA *****************************

Figure 21. Fourth display for dynamic table expansion example

Display Services

Chapter 3. Introduction to writing dialogs 61

1. Function pool (defined variables)

2. Function pool (implicit variables)

3. Shared pool

4. Application profile pool (profile pool).

Searching variable pools

Dialog variables are organized into groups, or pools, according to the dialog and

application with which they are associated. An application is one or more dialogs,

each of which has been started using the same application ID.

A pool can be thought of as a list of variable names that enables ISPF to access the

associated values. When a DM service encounters a dialog variable name in a

panel, message, table, or skeleton, it searches these pools to access the dialog

variable’s value. The pools and the types of dialog variables that reside in them

are:

Function pool Contains variables accessible only by that function. A variable that

resides in the function pool of the function currently in control is

called a function variable.

Shared pool Contains variables accessible only by dialogs belonging to the same

application. A variable that resides in the shared pool of the

current application is called a shared variable.

Profile pool Contains variables that are automatically retained for the user from

one session to another. A variable that resides in the profile pool is

called an application profile variable or profile variable. Profile

variables are automatically available when an application begins

and are automatically saved when it ends.

The number of shared, function, and profile variables that can exist at any one

time depends on the amount of storage available.

SELECT service and variable access

Figure 22 on page 63 shows how the SELECT service can be used to pass control

within a dialog and illustrates the resulting pool structures. Menus A and B access

variables from the shared and profile pools, because menus are not part of any

function. The dialog invokes Function X, which uses the VPUT service to copy one

of the variables from its function pool into the shared pool. Next, the dialog

invokes Function Y, which uses the VGET service to copy a dialog variable from

the shared pool to its function pool. Then it uses the SELECT service for further

menu processing.

Figure 22 on page 63 also shows how the SELECT service controls access to dialog

variable pools from both functions and menus.

When you define a variable as an input variable on a selection panel, these actions

occur during processing of the menu:

v If the variable does not exist in either the shared pool or the profile pool, it is

created in the shared pool.

v If the variable exists in the shared pool, it is accessed from, and is updated in,

the shared pool.

v If the variable exists in the profile pool and not in the shared pool, it is accessed

from, and is updated in, the profile pool.

Variable Services

62 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Function pools and dialog functions

Each function has its own unique pool of dialog variables. This is illustrated in

Figure 22. These function pools are maintained by ISPF on behalf of each respective

function. A function uses these dialog variables to communicate with the various

DM services. A function pool’s variables can be accessed only by the function for

which the pool was created. To make these variables available to other functions,

you must use variable services to copy any variables to be shared into the shared

pool.

Dialog variables associated with one function can have the same names as dialog

variables associated with another function, but they reside in different function

pools, and therefore, are not the same variables.

When a new function begins, ISPF creates a function pool for it. Variables can then

be created in the function pool and accessed from it. When the function ends, its

function pool, along with any variables in it, is deleted.

Command procedures, program functions, and function pools

When the function in control is a command procedure, the list of variable names

kept by the command language processor and the list of function variables kept by

ISPF is the same list. Thus, a variable created by the command procedure during

its execution is automatically a dialog variable. Likewise, the command procedure

Figure 22. Control and data flow in a dialog

Variable Services

Chapter 3. Introduction to writing dialogs 63

can automatically access a dialog variable entered in the function pool by ISPF.

However, ISPF variable names cannot exceed 8 characters.

Any CLIST or REXX variable such as SYSDATE and SYSTIME, which are

dynamically evaluated when referred to, can be used in a CLIST or REXX exec

running under ISPF; however, it cannot be used in panels, messages, skeletons, or

tables. For SYSDATE and SYSTIME, use ISPF system variables ZDATE and ZTIME,

respectively, which contain similar information.

ISPF makes available two other system variables, ZDATEF and ZDATEFD, to

support date representation in various national languages. ZDATEF contains the

date represented by the characters YY, MM, and DD plus delimiters. These

characters are never translated; however, they can be in any order. For example,

the date could be expressed MM/DD/YY, YY/MM/DD, and so on, depending on

how a date is expressed in a given national language. ZDATEFD contains the same

date format, translated into the session national language.

TSO global variables, in effect when ISPF is started, are not available to CLISTs

running under ISPF. These global variables are restored when ISPF terminates. Any

global variables put into effect from within ISPF are lost when ISPF terminates.

This CLIST command procedure example illustrates that ISPF treats command

procedure variables as dialog variables.

Assume that the definition for panel XYZ contains two dialog variable input fields,

AAA and BBB. In the panel definition, they might appear as follows:

+ INITIAL VALUE %===>_AAA +

+ INCREMENT %===>_BBB +

where the underscore indicates the start of an input field, followed by the name of

the variable.

When the procedure:

SET &AAA = 1

ISPEXEC DISPLAY PANEL(XYZ)

SET &CCC = &AAA + &BBB

is executed, variable AAA is set to the value 1. The procedure then invokes the

DISPLAY service to display panel XYZ. The value of AAA is 1 on the displayed

panel. ISPF creates the variable BBB in the function pool and displays it as a blank.

Now, in response to the panel display, you type 100 in the first field (AAA) and 20

in the second field (BBB). When you press Enter, the value 100 is automatically

stored in AAA and the value of 20 is automatically stored into BBB. The DISPLAY

service then returns control to the command procedure. When the next statement

executes, it creates variable CCC and sets it to 120, the sum of AAA and BBB.

When the function in control is a program, the associated function pool is not

shared with ISPF. This is because a program is compiled, not interpreted as

command procedures are. ISPF maintains a list of variables that belong to the

function so that DM services can use dialog variables for communication of data.

ISPF makes two types of entries in the program function pool, defined and

implicit.

Variable Services

64 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Use a variable service to create or delete defined variables

Use the VDEFINE service to create a defined dialog variable name in the function

pool and associate it with the corresponding program variable. This association

enables ISPF to directly access and modify that program variable. Otherwise, the

program’s variables are not available to ISPF. Use the VDELETE service to end this

association and remove ISPF’s ability to access that program variable.

The program shown, coded in PL/I, specifies that field PA of the program can be

accessed by ISPF by using a dialog variable named FA. Then, the DISPLAY service

is called to display panel XYZ.

DECLARE PA CHAR(8);

DECLARE LENGTHPA FIXED BIN(31) INIT(LENGTH(PA));

PA = ’OLD DATA’;

CALL ISPLINK (’VDEFINE ’, ’FA ’, PA, ’CHAR ’, LENGTHPA);

CALL ISPLINK (’DISPLAY ’, ’XYZ ’);

PA is declared as a program variable (character string, length 8). The program calls

the VDEFINE service to make PA accessible to ISPF through dialog variable FA. If

dialog variable FA is specified as an input field on panel XYZ, then “OLD DATA”

displays in field FA, and ISPF stores any data entered in that field into the

program variable PA.

Creating implicit variables

ISPF places implicit variables in the function pool when an ISPF service:

v Refers to a dialog variable name that is not found in the standard search

reference

v Must store data in a dialog variable that does not already exist in the function

pool.

Here is an illustration of how ISPF creates an implicit variable. Assume that panel

XYZ, in the preceding example, allows the user to enter a second value and that

this value is to be stored in dialog variable IA. This is the first reference to IA;

therefore, it does not yet exist in the function pool. Because variable IA does not

exist when it is referred to, ISPF creates it in the function pool. ISPF then stores

into IA the value entered on the panel. Thus, IA is an implicit dialog variable.

Any DM service invoked by a program function can access an implicit variable

directly by referencing the variable name. However, implicit variables cannot be

accessed directly from a program function. Programs access implicit variables only

through the use of the VCOPY and VREPLACE services.

When you are using APL2, variables in the current APL2 workspace that follow

APL2 and ISPF naming rules become function pool variables. ISPF treats these as

implicit variables. The VDEFINE service is not used with APL2 dialogs.

Naming defined and implicit variables

A defined variable and an implicit variable can have the same name. This occurs

when, using the VDEFINE service, a defined variable is created that uses the same

name as an existing implicit variable. When the same name exists in both the

defined and the implicit areas of a function pool, only the defined entry can be

accessed. You can make the implicit entry accessible by using the VDELETE service

to remove any defined entries for that variable name made through the VDEFINE

service. The implicit entries are not affected.

Variable Services

Chapter 3. Introduction to writing dialogs 65

You can define a given dialog variable name many times within a given function.

Each definition can associate a different program variable with the dialog variable

name. This is referred to as stacking. Only the most recent definition of that dialog

variable is accessible. A previous definition of that variable can be made accessible

by using the VDELETE service to delete the more recent definitions of that name.

For example, the main routine of a program can define a dialog variable to be

associated with one program variable. A subroutine is called and can define the

same dialog variable name to be associated with a different program variable. Any

ISPF services invoked after the second VDEFINE would have access to only the

subroutine’s program variable. The subroutine would use the VDELETE service to

delete that dialog variable before returning, thereby uncovering the earlier

definition set up in the main routine. To avoid a possible program error, each

VDEFINE processed within a function for a given dialog variable name should

have a VDELETE using the same name or an asterisk (*) as the operand. When an

asterisk is used as the operand, the VDELETE service removes all dialog variable

names previously defined by the program module from the function pool.

The VRESET service allows a program to remove its function pool variables as

though VDELETEs had been done. Any implicit variables are also deleted.

Sharing variables among dialogs

The shared pool allows dialog functions and selection panels to share access to

dialog variables.

The SELECT service creates shared pools when it processes the ISPSTART or ISPF

command, and when you specify the NEWAPPL or NEWPOOL keywords with the

SELECT service. When SELECT returns, it deletes the shared pool and reinstates

any previous shared pool.

A function can copy dialog variables from its function pool to the shared pool by

using the VPUT service. In addition, another function can directly copy these

variables to its function pool by means of the VGET service. Because a panel

displayed by the SELECT service does not belong to any function, any dialog

variables used in the panel are read from and stored into the shared or profile

pool.

Saving variables across ISPF sessions

Like the shared pool, the application profile pool contains variables that are

accessible to dialogs within an application. But, unlike the shared pool, the profile

variables are saved across sessions.

When a new application is started, it has access to a profile pool. If an application

is restarted by split screen, for example, both calls of the application access exactly

the same profile pool. The profile pool is maintained as an ISPF table whose name

is xxxxPROF, where xxxx is the application ID. If the application is already active,

then the current profile pool is used.

When accessing an application profile pool that is not currently active, ISPF first

searches the user’s profile files for a profile named xxxxPROF. ISPF finds the

profile if the user previously ran the application, and thus, had a copy of the

profile pool.

Variable Services

66 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

If ISPF cannot find the profile, it searches the table input file. The application

developer can provide a profile pool with the table files. A profile pool contains

variable names and values initialized for the application.

If ISPF cannot find the member in either the user’s profile pool or table input

library, it initializes the application profile pool with the contents of the default

profile pool, ISPPROF, which is read from the table input library. If the dialog

manager application ID “ISP” is active, the currently active copy of ISPPROF is

used as the default, rather than reading ISPPROF from ISPTLIB. ISPPROF is

distributed with ISPF. It contains a set of default Function key values. An

installation can modify this table to change these settings or to include other

variables that will be copied to initialize new profile pools.

Upon completion of the application, ISPF saves the contents of the application

profile pool, under the name xxxxPROF, in the user’s profile library. ISPF deletes

the profile pool from storage when the last call of the application terminates.

You must use the VPUT service to enter variables in the profile pool. Functions can

copy variables from the profile pool into function pools by using the VGET

variable services. Selection panels automatically update existing profile variables.

Removing variables from the shared or profile pool

You can use the VDELETE or VRESET service to remove variables only from the

function pool. However, if you wish to do some housekeeping in the other variable

pools, you can use the VERASE service. The VERASE service allows you to

remove variable names and values from the shared pool, the profile pool, or both.

You can specify on the VERASE service request a list of one or more variable

names to be removed from the shared pools or both. For example:

ISPEXEC VERASE (AGE ADDRESS SOCSEC) PROFILE

might be used to remove variable values for age, address, and social security

number from the profile pool.

For detailed information about VERASE and other services, refer to the z/OS ISPF

Services Guide.

Read-only profile pool extension variables

ISPF provides for a read-only extension of the application profile variable pool.

This allows installations to maintain better control over application default profile

variables. It also results in conservation of disk storage because a copy of these

variables need not exist in the application profile of every application user.

To use the read-only extension, you do two things:

1. First you must define the read-only extension. The read-only extension is

actually a table, which you can create by using the ISPF TBCREATE table

service. You add variables to this table as extension variables; that is, variables

not specified when the table is created. This is illustrated in the CLIST

procedure shown, using the SAVE keyword on the TBADD table service.

You need to create the extension table only once. After the table is saved, you

must define it to ISPF by using an ALLOCATE command or a LIBDEF service

request.

2. You then use DM variable services to put the name of the read-only extension

table into system variable ZPROFAPP in the profile variable pool.

Variable Services

Chapter 3. Introduction to writing dialogs 67

An example of a CLIST to create a read-only extension table named ROTABLE is

shown in Figure 23. The table is to contain variables RDONLY1, RDONLY2, and

RDONLY3 set to values of LKHFC, FLIST, and SPOOLFUL, respectively. After the

procedure closes the table, it sets system variable ZPROFAPP to the table name,

ROTABLE. The procedure then puts ZPROFAPP into the profile variable pool.

 When a new application that uses the NEWAPPL keyword on the SELECT service

is specified, ISPF interrogates variable ZPROFAPP in the new application’s profile

pool. If the variable value is not null, it is assumed to be the name of the profile

extension table. ISPF searches the table input files for a table with the name

specified by ZPROFAPP. The set of variables in this table becomes the read-only

extension for the profile pool of the application just selected.

Although variable services are not effective for updating the read-only extension,

you can create or update the table used as the extension by using DM table

services. Updating the extension may be done only when the application is not

active, because the table is open in nowrite mode while the application is active.

If a variable name is referred to and exists in both the profile pool and the

read-only extension table, ISPF uses the variable from the user’s profile pool. In

other words, the search order is: first the profile pool, and then the read-only

extension.

If a VPUT PROFILE is issued for a variable in the read-only extension, the update

for that variable is made to the user area of the profile pool, not to the read-only

extension. Only the profile pool variable update is saved and accessed, not the

extension variable value.

Variables owned by ISPF

A second level of profile pool, the system profile pool (ISPSPROF), is always

active. The dialog manager owns the dialog variables within the system profile

pool, and the variables cannot be modified by an application. They can be read,

however, because the system profile pool is included in the standard search

sequence after the profile pool. All system variable names begin with “Z”, such as

ZTERM, and supply information such as terminal type and list and log defaults.

If a system profile pool variable is used on a selection panel, a corresponding field

is created in the profile pool (ISPPROF). Subsequently, when that variable is

/* Example of creating a read-only extension table */

SET ROV1 = LKHFC

SET ROV2 = FLIST

SET ROV3 = SPOOLFUL

SET ROVLIST = &STR(ROV1 ROV2 ROV3)

ISPEXEC TBCREATE ROTABLE

ISPEXEC TBADD ROTABLE SAVE(&ROVLIST)

ISPEXEC TBCLOSE ROTABLE

SET &RC = &LASTCC

IF &RC = 0 THEN -

DO

 /* Put extension table name into system variable ZPROFAPP. */

 SET ZPROFAPP = ROTABLE

 ISPEXEC VPUT ZPROFAPP PROFILE

END

Figure 23. CLIST to create a read-only extension table

Variable Services

68 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

referred to by the dialog, the profile pool value is used rather than the system

profile pool value. The dialog can use the VERASE service to delete variables from

the profile (ISPPROF) pool.

Variable formats

Information entered on a panel is in character string format. All dialog variables

remain in character string format when stored:

v As implicit variables in a function pool

v In the shared pool

v In the profile pool

v In ISPF tables.

Defined variables, however, can be translated to a fixed binary, bit, hexadecimal,

float, packed, or binary string, or to a user-defined format when stored internally

in a program module. The translation occurs automatically when the variable is

stored by an ISPF service. A translation back to character string format occurs

automatically when the variable is accessed.

The VMASK service is used to validate input into a VDEFINEd dialog variable.

See the z/OS ISPF Services Guide for more information.

When a defined variable is stored, either of two errors can occur:

Truncation If the current length of the variable is greater than the defined

length within the module, the remaining data is lost.

Translation If the variable is defined as something other than a character

string, and the external representation has invalid characters, the

contents of the defined variable are lost.

In either case, the ISPF service issues a return code of 16.

System variables communicate between dialogs and ISPF

System variables are used to communicate special information between the dialog

and the dialog manager (ISPF). System variable names are reserved for use by the

system. They begin with the letter “Z”. Therefore, avoid names that begin with “Z”

when choosing dialog variable names.

The types of system variables are input, output, non-modifiable, and input-output.

Their type depends on their usage.

To access and update system variables, use variable services according to which

pool the variables are in. System variables in the function pool can be accessed and

updated directly from a command procedure. Those in the shared or profile pools

can be accessed by using the VGET service, and updated by using the VPUT

service.

A program function can access and update system variables in the function pool

using the VDEFINE service. Dialog variables can be accessed by using the VCOPY

service and updated by using the VREPLACE service.

The system variables in the shared or profile pools can be accessed by using the

VCOPY service. They can be updated by first updating the variable in the function

pool by using the VDEFINE or VREPLACE service and then moving that value to

the shared or profile pool by using the VPUT service.

Variable Services

Chapter 3. Introduction to writing dialogs 69

Using VDEFINE, VDELETE, VRESET, VCOPY, VMASK, and

VREPLACE

For functions coded in a programming language other than APL2, you can manage

the availability to ISPF of the internal program variables that are to be used as

dialog variables through the ISPF VDEFINE, VDELETE, and VRESET services.

Variables used in a program function are not automatically put into that function’s

variable pool. Therefore, those variables are not initially available to ISPF for

processing function requests. A function can use the VDEFINE service to make

function variable names available to ISPF through the function pool.

The VDELETE and VRESET services are used to cancel the effect of using

VDEFINE service requests. VDELETE can be used to delete access by ISPF to

selected defined variables by removing them from the function pool. VRESET

removes all defined and implicit variables from the function pool.

A program function can obtain a copy of dialog variables by using the VCOPY

service. The service request can specify that either the variable data address or the

data itself be returned.

The VMASK service is used to validate the data of a variable defined with the

VDEFINE service. VMASK associates a specified user or predefined mask with a

variable previously defined with VDEFINE. The VEDIT statement must be used to

indicate VMASKed variables on a panel.

A program function can update the contents of dialog-defined or implicit variables

in the function pool by using the VREPLACE service. The names of the variables

to be updated and the new contents are specified with the VREPLACE service

request.

The VDEFINE, VDELETE, VRESET, VCOPY, VMASK, and VREPLACE variable

services are not used with functions coded as procedures. For a function coded as

a CLIST or APL2 procedure, variables used in the procedure are automatically

treated as dialog variables. No special action is required to define them to ISPF.

Any trailing blanks in CLIST variables are not truncated; they remain as part of the

variables.

Using the VGET, VPUT, and VERASE services

The VGET, VPUT, and VERASE services can be used by both program and

procedure functions. Functions use the VGET and VPUT services to control

movement of variables between function pools and shared or profile pools.

Functions can also obtain the values of system symbolic variables by using the

SYMDEF parameter on the VGET service.

Each function has its own function variable pool. The variables in a given

function’s pool are not available to other functions, and vice versa. To overcome

this, a function can use the VGET service to copy into its function pool variables

from the shared or profile pools. The function can make variables in its function

pool available to other functions in the same application by copying them to the

shared or profile pool by using the VPUT service.

You can use the VERASE service to remove variable names and values from the

shared pool and profile pool. The VDELETE and VRESET services are available for

removing function pool variables.

Variable Services

70 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Summary of variable services

The variable services are:

All Functions

VERASE Remove variables from the shared pool or profile pool

VGET Retrieve variables from the shared pool or profile pool or retrieve

the value of a system symbolic variable

VPUT Update variables in the shared pool or profile pool

Program Functions Only

VCOPY Copy data from a dialog variable to the program

VDEFINE Define function program variables to ISPF

VDELETE Remove definition of function variables

VMASK Associate a mask with a dialog variable

VREPLACE Update a dialog variable with program data specified in the

service request

VRESET Reset function variables

Using the table services

Table services let you use and maintain sets of dialog variables. A table is a

two-dimensional array of information in which each column corresponds to a

dialog variable, and each row contains a set of values for those variables.

Contents for a table are shown in Table 3 on page 77. In that example, the variables

that define the columns are as follows:

EMPSER Employee Serial Number

LNAME Last Name

FNAME First Name

I Middle Initial

PHA Home Phone: Area Code

PHNUM Home Phone: Local Number

Where tables reside

A table can be either temporary or permanent. A temporary table exists only in

virtual storage. It cannot be written to disk storage.

Permanent tables are maintained in one or more table libraries. A permanent table,

while created in virtual storage, can be saved on direct access storage. It can be

opened for update or for read-only access, at which time the entire table is read

into virtual storage. When a table is being updated in virtual storage, the copy of

the table on direct access storage cannot be accessed until the update is complete.

For both temporary and permanent tables, rows are accessed and updated from

the in-storage copy. A permanent table that has been accessed as read-only can be

modified in virtual storage, but cannot be written back to disk storage.

When a permanent table is opened for processing, it is read from a table input

library. A table to be saved can be written to a table output library that is different

from the input library. The input and output libraries should be the same if the

updated version of the table is to be reopened for further processing by the same

dialog.

Variable Services

Chapter 3. Introduction to writing dialogs 71

Accessing data

You specify the variable names that define table columns when the table is created.

Specify each variable as either a KEY field or a NAME (non-key) field. You can

specify one or more columns (variable names) as keys for accessing the table. For

the table shown in Table 3 on page 77, EMPSER might be defined as the key

variable. Or EMPSER and LNAME might both be defined as keys, in which case, a

row would be found only if EMPSER and LNAME both match the current values

of those variables. A table can also be accessed by one or more “argument”

variables that need not be key variables. You can define the variables that

constitute the search argument dynamically by using the TBSARG and TBSCAN

services.

In addition, a table can be accessed by use of the current row pointer (CRP). The

table can be scanned by moving the CRP forward or backward. A row can be

retrieved each time the CRP is moved. When a table is opened, the CRP is

automatically positioned at TOP, ahead of the first row. Table services, such as

TBTOP, TBBOTTOM, and TBSKIP are available for positioning the CRP.

When a row is retrieved from a table, the contents of the row are stored in the

corresponding dialog variables. When a row is updated or added, the contents of

the dialog variables are saved in that row.

When a row is stored, a list of “extension” variables can be specified by name.

These extension variables, and their values, are added to the row. Thus, variables

that were not specified when the table was created can be stored in the row. A list

of extension variable names for a row can be obtained when the row is read. If the

list of extension variables is not specified again when the row is rewritten, the

extensions are deleted.

ISPF Table Services treat blank data and NULL (zero-length) data as equal. For

example, these VDEFINES are executed:

"ISPLINK(’VDEFINE ’,’(V1)’,VAL1,’CHAR ’,L8,’ NOBSCAN ’)"

"ISPLINK(’VDEFINE ’,’(V2)’,VAL2,’CHAR ’,L8)"

If L8 = 8, VAL1 = ’ABCD ’ and VAL2 = ’ABCD ’, V1 will have a length of 8

and a value of ’ABCD ’, and V2 will have a length of 4 and a value of ’ABCD’.

To ISPF, V1 and V2 will be equal because before ISPF compares two values, it pads

the shorter value with blanks so that the lengths are equal.

If the same VDEFINES are done with VAL1 = ’ ’ and VAL2 = ’ ’,

V1 will have a length of 8 and a value of ’ ’ (8 blanks), and V2 will have a

length of 0 (NULL value). To ISPF, V1 is EQUAL to V2, because ISPF will pad V2

with 8 blanks before doing the comparison to V1.

Services that affect an entire table

These services operate on an entire table:

TBCLOSE Closes a table and saves a permanent copy if the table was opened

TBCREATE Creates a new table and opens it for processing

TBEND Closes a table without saving

TBERASE Deletes a permanent table from the table output file

TBOPEN Opens an existing permanent table for processing

TBQUERY Obtains information about a table

TBSAVE Saves a permanent copy of a table without closing

TBSORT Sorts a table

TBSTATS Provides access to statistics for a table

Table Services

72 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Temporary tables are created by the TBCREATE service (NOWRITE mode) and

deleted by either the TBEND or TBCLOSE service. A new permanent table is

created in virtual storage by the TBCREATE service (write mode). The table does

not become permanent until it is stored on direct access storage by either the

TBSAVE or TBCLOSE service.

An existing permanent table is opened and read into virtual storage by the

TBOPEN service. If the table is to be updated (WRITE mode), the new copy is

saved by either the TBSAVE or TBCLOSE service. If it is not to be updated

(NOWRITE mode), the virtual storage copy is deleted by either the TBEND or

TBCLOSE service.

Services that affect table rows

These services operate on a row of the table:

TBADD Adds a new row to the table.

TBBOTTOM Sets CRP to the last row and retrieves the row.

TBDELETE Deletes a row from the table.

TBEXIST Tests for the existence of a row (by key).

TBGET Retrieves a row from the table.

TBMOD Updates an existing row in the table. Otherwise, adds a new row

to the table.

TBPUT Updates a row in the table if it exists and if the keys match.

TBSARG Establishes a search argument for use with TBSCAN. Can also be

used in conjunction with TBDISPL.

TBSCAN Searches a table for a row that matches a list of “argument”

variables, and retrieves the row.

TBSKIP Moves the CRP forward or back by a specified number of rows,

and then retrieves the row at which the CRP is positioned.

TBTOP Sets CRP to TOP, ahead of the first row.

TBVCLEAR Sets to null dialog variables that correspond to variables in the

table.

Protecting table resources

Table services provide a resource protection mechanism designed to prevent

concurrent updating of the same table by more than one user. This protection

mechanism assumes that for all users having update access to a given table, the

same library name is used in the first statement defining the table for the table

library. This can be ISPTLIB or another specified library. Other libraries can be

specified by the use of the LIBRARY keyword or the LIBDEF service.

When a table is opened or created in write mode, an exclusive enqueue is

requested for a resource name consisting of the first library name defined in the

ISPTLIB, or the first library name defined in the LIBRARY DD or the top file

specified in the LIBDEF Service stack, concatenated with the table name. The

TBOPEN or TBCREATE service fails with a return code of 12 if this enqueue or

lock is unsuccessful. A successful enqueue or lock stays in effect until the

completion of a TBEND or TBCLOSE service for the table. If the NAME parameter

is specified on the TBSAVE or TBCLOSE service, an additional exclusive enqueue

or lock is issued. The resource name consists of the first library name defined in

the ISPTLIB, or the first library name defined in the LIBRARY DD or the top file

specified in the LIBDEF Service stack, concatenated with the name specified in the

NAME parameter. If this enqueue or lock fails, the service terminates with a return

code of 12 and the table is not written.

Table Services

Chapter 3. Introduction to writing dialogs 73

The table output library represented by the ISPTABL definition or specified library

name is protected from concurrent output operations from any ISPF function

through a separate mechanism not specific to table services.

The first data set in the ISPTLIB concatenation should be the same as the data set

used for ISPTABL. This ensures predictable behavior of dialogs that use table

services without specifying the LIBRARY keyword.

Example: create and update a simple table

These series of commands demonstrates the use of table services:

1. Create a permanent table, named DALPHA, to consist of dialog variables AA,

BB, and CC. AA is the key field. BB and CC are name fields.

ISPEXEC TBCREATE DALPHA KEYS(AA) NAMES(BB CC) WRITE

 AA BB CC

2. Display a panel named XYZ. This panel prompts a user to enter values for

dialog variables AA, BB, and CC, which are used in the steps of this example.

ISPEXEC DISPLAY PANEL (XYZ)

3. Assume the user enters these values on panel XYZ:

AA = Pauly John

BB = W590

CC = Jones Beach

ISPF automatically updates dialog variables AA, BB, and CC, in the function

variable pool, with the user-entered values.

Record these values in the table DALPHA.

ISPEXEC TBADD DALPHA

 AA BB CC

Pauly John W590 Jones Beach

4. Assume these values for dialog variables AA, BB, and CC are entered by a user,

as in step 3, through a panel display operation:

AA = Clark Joan

BB = Y200

CC = Bar Harbor

Record these values in the table DALPHA.

ISPEXEC TBADD DALPHA

 AA BB CC

Pauly John

Clark Joan

W590

Y200

Jones Beach

Bar Harbour

Table services adds a row to table DALPHA immediately following the row

added by the previous TBADD. Following the TBADD, the current row pointer

(CRP) is positioned at the newly added row. Before a row is added by the

TBADD service, table service scans the table to determine if the KEY field of

the new row to be added duplicates the KEY field of an existing row. If it does,

the TBADD is not performed.

5. Save table DALPHA for later use by writing it to the table output library.

ISPEXEC TBCLOSE DALPHA

Table Services

74 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

The table DALPHA is written from virtual storage to the file specified by

ISPTABL.

Determining table size

The length of any row in a table cannot exceed 65 536 bytes. The length can be

computed as follows:

Row size = 22 + 4a + b + 9c

where:

a = total number of variables in the row, including extensions

b = total length of variable data in the row

c = total number of extension variables in the row

The maximum number of rows allowed in a table is 16 777 215. However, dialog

variables later used in processing can only keep a value of 999 999 as the

maximum number of table rows. The total table size is the sum of the row lengths,

plus the length of the data table control block (DTCB), plus the sort information

record for sorted tables. The length of the DTCB can be computed as follows:

DTCB length = 152 + 16d

where:

d = total number of columns in the table, not including extension variables

The length of the sort information record can be computed as follows:

sort-information length = 12 + 8e

where:

e = number of sort fields

The number of tables that can be processed at one time is limited only by the

amount of available virtual storage.

Example: function using the DISPLAY, TBGET, and TBADD

services

This topic describes the use of the DISPLAY, TBGET, and TBADD services in a

dialog function that allows a user to add data to a table. A user can start the

function by using the ISPSTART command. If the user has already started ISPF, the

function can be started from:

v A menu

v The command field in any display with an application command that is defined

in the current command table to have the SELECT action

v Another function by using the SELECT service

During function processing, the DISPLAY service controls displays requesting the

user to enter data about new employees. The data consists of:

v Employee serial number, entered on panel SER

v Name and phone number, entered on panel DATA.

Entered information is added to the table, as a row, through the TBADD service.

If the user enters an employee serial number for which an employee record already

exists in the table, a DUPLICATE NUMBER short message displays on line 1 of

Table Services

Chapter 3. Introduction to writing dialogs 75

panel SER. If the user enters the HELP command or presses the HELP Function

key to get further explanation of this short message, this long message is displayed

on line 3 of the panel:

EMPLOYEE RECORD ALREADY EXISTS FOR THIS NUMBER. ENTER ANOTHER

When the user successfully enters data for an employee, the short message NEW

RECORD INSERTED is displayed on line 1 of panel SER. Then the user can enter

the serial number of the next employee for which table data is to be added.

The user ends function processing by entering the END or RETURN command on

any displayed panel or by pressing the END Function key or RETURN Function

key.

“Command procedure function” lists the complete function, followed by each

statement with supporting text and figures.

Command procedure function

 1. CONTROL ERRORS CANCEL

 2. TBOPEN TAB1 WRITE

 3. DISPLAY PANEL(SER)

 4. if return code = 0, go to 6

 5. if return code = 8, go to 21

 6. TBGET TAB1

 7. if return code = 0, go to 9

 8. if return code = 8, go to 12

 9. DISPLAY PANEL(SER) MSG(EMPX210)

10. if return code = 0, go to 6

11. if return code = 8, go to 21

12. Set dialog variables to blanks

13. DISPLAY PANEL(DATA)

14. if return code = 0, go to 16

15. if return code = 8, go to 21

16. TBADD TAB1

17. if return code = 0, go to 18

18. DISPLAY PANEL(SER) MSG(EMPX211)

19. if return code = 0, go to 6

20. if return code = 8, go to 21

21. TBCLOSE TAB1

22. End the function

Description of function steps

 1. CONTROL ERRORS CANCEL

This DM service request specifies that the function is to be terminated for a

return code of 12 or higher from a DM service request.

 2. TBOPEN TAB1 WRITE

Open table TAB1 in update (WRITE) mode. Read table contents, shown in

Table 3 on page 77, into virtual storage. TAB1 is referred to by Steps 2, 6, 16,

and 21.

Table Services

76 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Table 3. Five rows in table TAB1

EMPSER LNAME FNAME I PHA PHNUM

598304 Robertson Richard P 301 840-1224

172397 Smith Susan A 301 547-8465

813058 Russell Richard L 202 338-9557

395733 Adams John Q 202 477-1776

502774 Kelvey Ann A 914 555-4156

 3. DISPLAY PANEL(SER)

This DISPLAY operation uses the panel definition SER, shown in Figure 24, to

control the format and content of the panel display, shown in Figure 25.

Both the panel definition and the display are referred to in Steps 3, 9, and 18.

The display requests that a serial number be entered for an employee. The

)BODY

%--------------------- EMPLOYEE SERIAL ---------------------------------%

%COMMAND ===>_ZCMD %

+

%ENTER EMPLOYEE SERIAL BELOW:

+

+

+ EMPLOYEE SERIAL%===>_EMPSER+ (MUST BE 6 NUMERIC DIGITS)

+

+

+

+PRESS%ENTER+TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.

+

+PRESS%END KEY+(PF3) TO END THIS SESSION.

)PROC

 VER (&EMPSER,NONBLANK,PICT,NNNNNN)

)END

Figure 24. Panel definition SER

 -------------------------- EMPLOYEE SERIAL ------------------------

 COMMAND ===>

 ENTER EMPLOYEE SERIAL BELOW:

 EMPLOYEE SERIAL ===> (MUST BE 6 NUMERIC DIGITS)

 PRESS ENTER TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.

 PRESS END KEY (PF3) TO END THIS SESSION.

Figure 25. Panel display SER

Table Services

Chapter 3. Introduction to writing dialogs 77

user enters the serial number in the field labeled EMPLOYEE SERIAL

NUMBER. The DISPLAY service then stores it in function pool variable

EMPSER, and verifies it as specified on the panel definition. The verification is

specified in a VER statement in the)PROC section of the panel definition, as

shown in Figure 24 on page 77:

VER (&EMPSER,NONBLANK,PICT,NNNNNN)

This statement specifies that EMPSER must be nonblank and must consist of

six digits, each in the range of 0-9.

When the input passes the verification, the DISPLAY service returns control to

the function.

If the input fails the verification, the panel is automatically displayed again,

but with an appropriate ISPF-supplied message displayed, right-justified, on

line 1. For example, if the user fails to enter the required employee serial

number, the ENTER REQUIRED FIELD message is displayed, as shown in

Figure 26, and referred to in Steps 3 and 18.

After the user re-enters the information, it is stored again in function pool

variable EMPSER and reverified. The process is repeated until the information

passes the verification tests.

 4. if return code = 0, go to 6

If the return code is 0, the display operation is successfully completed. Go to

step 6 to verify that no record exists for this employee number.

 5. if return code = 8, go to 21

If the return code is 8, the END or RETURN command was entered on the

display by the user. Go to step 21 to end processing.

 6. TBGET TAB1

This TBGET uses the employee serial number, stored in EMPSER in step 3 or

18, to attempt retrieval of an employee record from the TAB1 table. The table

is a keyed table and has been created in another dialog by the service request:

TBCREATE TAB1 KEYS(EMPSER) NAMES(LNAME FNAME I PHA PHNUM)

 7. if return code = 0, go to 9

 --------------------- EMPLOYEE SERIAL -------------ENTER REQUIRED FIELD

 COMMAND ===>

 ENTER EMPLOYEE SERIAL BELOW:

 EMPLOYEE SERIAL ===> (MUST BE 6 NUMERIC DIGITS)

 PRESS ENTER TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.

 PRESS END KEY (PF3) TO END THIS SESSION.

Figure 26. Panel display SER with an ISPF-provided message superimposed on line 1

Table Services

78 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

A return code of 0 means that the record is found. Therefore, a record already

exists for the employee serial number entered by the user. Go to step 9 to

display the DUPLICATE NUMBER message.

 8. if return code = 8, go to 12

A return code of 8 means that no record is found. Go to step 12 to request the

user to enter employee data.

 9. DISPLAY PANEL(SER) MSG(EMPX210)

This DISPLAY operation uses panel definition SER (Figure 24 on page 77) and

message EMPX210, shown in Figure 27 to control the format and content of

the display. Figure 27 is referred to by steps 9, 13, and 18.

This DISPLAY request, omitting the PANEL(SER) parameter, could have been

used in this step:

 DISPLAY MSG(EMPX210)

When the PANEL parameter is omitted, the specified message is

superimposed on the panel currently being displayed, which, in this case, is

the panel SER.

The short form of the message EMPX210, DUPLICATE NUMBER, is

superimposed on line 1 of the panel display, shown in Figure 28 on page 80.

EMPX210 ’DUPLICATE NUMBER’ .ALARM=YES

’EMPLOYEE RECORD ALREADY EXISTS FOR THIS NUMBER. ENTER ANOTHER.’

EMPX211 ’NEW RECORD INSERTED’

’ENTER SERIAL NUMBER FOR NEXT EMPLOYEE RECORD TO BE INSERTED.’

EMPX212 ’ENTER PHONE NUMBER’

’IF THE EMPLOYEE HAS NO PHONE, ENTER 000-000’

EMPX213 ’ENTER FIRST NAME’

’A FIRST NAME OR FIRST INITIAL IS REQUIRED.’

EMPX214 ’ENTER LAST NAME’

’A LAST NAME IS REQUIRED.’

Figure 27. Message EMPX21

Table Services

Chapter 3. Introduction to writing dialogs 79

While viewing this message, the user can request the long form of the

message by pressing the HELP Function key. The long form of the message

EMPLOYEE RECORD ALREADY EXISTS FOR THIS NUMBER. ENTER ANOTHER.

is superimposed on line 3 of the display. See Figure 29.

After the user enters the requested serial number, the DISPLAY service stores

it in function pool variable EMPSER and verifies it as described for step 3.

After the input passes verification, the DISPLAY service returns control to the

function.

10. if return code = 0, go to 6

If the return code is 0, the display operation is successfully completed. Go to

step 6 to verify that no record already exists for this employee number.

11. if return code = 8, go to 21

 --------------------- EMPLOYEE SERIAL -------------DUPLICATE NUMBER

 COMMAND ===>

 ENTER EMPLOYEE SERIAL BELOW:

 EMPLOYEE SERIAL ===> 598304 (MUST BE 6 NUMERIC DIGITS)

 PRESS ENTER TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.

 PRESS END KEY (PF3) TO END THIS SESSION.

Figure 28. Panel display SER—short form of message EMPX210 superimpose line 1

 --------------------- EMPLOYEE SERIAL -------------DUPLICATE NUMBER

 COMMAND ===>

 EMPLOYEE RECORD ALREADY EXISTS FOR THIS NUMBER. ENTER ANOTHER.

 ENTER EMPLOYEE SERIAL BELOW:

 EMPLOYEE SERIAL ===> 598304 (MUST BE 6 NUMERIC DIGITS)

 PRESS ENTER TO DISPLAY NEXT SCREEN FOR ENTRY OF EMPLOYEE DATA.

 PRESS END KEY (PF3) TO END THIS SESSION.

Figure 29. Panel display SER—long form of message EMPX210 superimposed on line 3

Table Services

80 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

If the return code is 8, the END or RETURN command was entered on the

display by the user. Go to step 21 to end processing.

12. Set dialog variables to blanks

These function pool variables are set to blank to prepare to receive data for a

new employee record.

13. DISPLAY PANEL(DATA)

The DISPLAY operation uses panel definition DATA, shown in Figure 30, to

control the format and content of the display shown in Figure 31 on page 82.

)BODY

%---------------------------- EMPLOYEE RECORDS ----------------------%

%COMMAND ===>_ZCMD

+

% EMPLOYEE SERIAL: &EMPSER

+

+ EMPLOYEE NAME:

+ LAST %===>_LNAME +

+ FIRST %===>_FNAME +

+ INITIAL%===>_I+

+

+ HOME PHONE:

+ AREA CODE %===>_PHA+

+ LOCAL NUMBER%===>_PHNUM +

+

+

+PRESS%ENTER+TO STORE EMPLOYEE DATA AS ENTERED ABOVE.

+

+PRESS%END KEY+(PF3) TO END THIS SESSION.

)INIT

 .CURSOR = LNAME

 IF (&PHA = ’ ’)

 &PHA = 914

)PROC

 VER (&LNAME,ALPHA)

 VER (&FNAME,ALPHA)

 VER (&I,ALPHA)

 VER (&PHA,NONBLANK,PICT,NNN)

 VER (&PHNUM,PICT,’NNN-NNNN’)

 VER (&LNAME,NONBLANK,MSG=EMPX214)

 VER (&FNAME,NONBLANK,MSG=EMPX213)

 VER (&PHNUM,NONBLANK,MSG=EMPX212)

)END

Figure 30. Panel definition DATA

Table Services

Chapter 3. Introduction to writing dialogs 81

The variables set to blank in step 12 are displayed, along with the new

employee serial number entered in step 3 or 18. The user is asked to enter, in

the blank fields displayed on the screen, the name and phone number for the

employee.

After the user enters these fields, the DISPLAY service stores the input in

function pool variables LNAME, FNAME, I, PHA, and PHNUM. Then,

verification of the input is performed as specified in VER statements in the

)PROC section of the panel definition (Figure 30 on page 81).

If the input fields pass the verification tests, the DISPLAY service returns

control to the function.

If the input fields fail the verification tests, a short-form message is displayed

on line 1.

The message can be provided by ISPF, or the number of the message

displayed may have been specified in the VER statement that defined the

verification test. See VER statements containing message IDs EMPX212,

EMPX213, and EMPX214 in Figure 30 on page 81. When a message ID is

specified, this message is displayed instead of an ISPF-provided message. In

either case, if the user enters the HELP command, the long form of the

message is displayed on line 3.

The messages request that information be re-entered. When this information is

re-entered, it is stored again in function pool variables and reverified. The

process is repeated until the verification tests are passed.

14. if return code = 0, go to 16

If the return code is 0, the display operation is successfully completed. Go to

step 16 to add the record to the table.

15. if return code = 8, go to 21

If the return code is 8, the END or RETURN command was entered on the

display by the user. Go to step 21 to end processing.

16. TBADD TAB1

This TBADD adds a row to table TAB1 by copying values from function pool

variables to the table row. The values copied are employee serial number,

stored in the function pool variable EMPSER by step 3 or 18, and employee

name and phone number, stored in function pool variables LNAME, FNAME,

 --------------------- EMPLOYEE RECORDS ------------------------------------

 COMMAND ===>

 EMPLOYEE SERIAL: 106085

 EMPLOYEE NAME:

 LAST ===> __

 FIRST ===>

 INITIAL ===>

 HOME PHONE:

 AREA CODE ===>

 LOCAL NUMBER ===>

 PRESS ENTER TO STORE EMPLOYEE DATA AS ENTERED ABOVE.

 PRESS END KEY (PF3) TO END THIS SESSION.

Figure 31. Panel display DATA

Table Services

82 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

I, PHA, and PHNUM by step 13. Function pool variables must have the same

names as the table variables to which they are to be copied by the TBADD

operation. Therefore, the names used in the TBCREATE request are the same

as the names used in the definitions for panels on which the DISPLAY service

accepts user input.

17. if return code = 0, go to 18

If the return code is 0, the TBADD operation is successfully completed. Go to

step 18 to display the NEW RECORD INSERTED message.

18. DISPLAY PANEL(SER) MSG(EMPX211)

This DISPLAY operation uses panel definition SER (Figure 24 on page 77) and

message EMPX211 (Figure 27 on page 79) to control the format and content of

the display. The short form of message EMPX211, NEW RECORD INSERTED,

is displayed on line 1. If the user enters the HELP command while this

message is being displayed, the long form of the message (Figure 27 on page

79):

ENTER SERIAL NUMBER FOR NEXT EMPLOYEE RECORD TO BE INSERTED

is displayed on line 3.

The user enters another serial number. The DISPLAY service verifies it as

described in step 3. When the serial number passes the verification tests, the

DISPLAY service returns control to the function.

19. if return code = 0, go to 6

If the return code is 0, the display operation is successfully completed. Go to

step 6 to verify that no record already exists for this employee number.

20. if return code = 8, go to 21

If the return code is 8, the END or RETURN command was entered on the

display by the user. Go to step 21 to end processing.

21. TBCLOSE TAB1

Close the table TAB1. Write it from virtual storage to permanent storage.

22. End the function.

Specifying dbcs search argument format for table services

For table services, you can specify either a DBCS or MIX (DBCS and EBCDIC)

format string as a search argument. If either is used as a generic search argument,

such as xxx* (any argument whose first three characters are ‘xxx’), the argument

must be specified as follows:

v DBCS format string

DBDBDBDB**

where DBDBDBDB represents a 4-character DBCS string and ** is a single DBCS

character representing the asterisk (*).

v MIX (DBCS and EBCDIC) format string

eeee[DBDBDBDBDB]*

where eeee represents a 4-character EBCDIC string, DBDBDBDBDB represents a

5-character DBCS string, [and] represent shift-out and shift-in characters, and *

is an asterisk in single-byte EBCDIC format.

Using the file-tailoring services

The file-tailoring services, listed in the order they are normally invoked, are:

Table Services

Chapter 3. Introduction to writing dialogs 83

FTOPEN Prepares the file-tailoring process and specifies whether the

temporary file is to be used for output

FTINCL Specifies the skeleton to be used and starts the tailoring process

FTCLOSE Ends the file-tailoring process

FTERASE Erases an output file created by file tailoring.

File-tailoring services read skeleton files and write tailored output that can be used

to drive other functions. Frequently, file tailoring is used to generate job files for

batch execution.

The file-tailoring output can be directed to a file specified by the function, or it can

be directed to a temporary sequential file provided by ISPF. The file name of the

temporary file is available in system variable ZTEMPF. In MVS, ZTEMPF contains

a data set name. The ddname of the temporary file is available in system variable

ZTEMPN.

You can use the ISPFTTRC command to trace both the execution of file tailoring

service calls (FTOPEN, FTINCL, FTCLOSE, and FTERASE) and the processing that

occurs within the file tailoring code and processing of each statement. For more

information, refer to “File tailoring trace command (ISPFTTRC)” on page 374.

Skeleton files

Each skeleton file is read record-by-record. Each record is scanned to find any

dialog variable names, which are names preceded by an ampersand. When a

variable name is found, its current value is substituted from a variable pool.

Skeleton file records can also contain statements that control processing. These

statements provide the ability to:

v Set dialog variables

v Imbed other skeleton files

v Conditionally include records

v Iteratively process records in which variables from each row of a table are

substituted.

When iteratively processing records, file-tailoring services read each row from a

specified table. If the table was already open before processing the skeleton, it

remains open with the CRP positioned at TOP. If the table was not already open,

file tailoring opens it automatically and closes it upon completion of processing.

Problems can occur when using file-tailoring services in conjunction with other

services (EDIT, COPY, ...) that result in modifying the data set members in the

ISPSLIB concatenation. ISPSLIB is the input skeleton library, and it is assumed to

be a static library. FTINCL obtains existing DCB/DEB information based on the

last OPEN done against ISPSLIB by ISPF. It is recommended that applications that

use file tailoring and modify members of ISPSLIB, use the LIBDEF service for

ISPSLIB to point to the application’s skeleton library.

The application should also check for any changes to the data set information

DCB/DEB before invoking file-tailoring services. If there has been a change, then

the application should issue a NULL LIBDEF for ISPSLIB and then reissue the

original LIBDEF for ISPSLIB. This will force a close and re-open of the ISPSLIB

library.

File—Tailoring Services

84 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Example of a skeleton file

A sample skeleton file is shown in Figure 32. It contains job control language (JCL)

for an assembly and optional load-and-go. The tailored output could be submitted

to the background for submission.

 The sample skeleton refers to several dialog variables (ASMPARMS, ASMIN,

MEMBER, and so on) highlighted in the figure. It also illustrates use of select

statements “)SEL” and “)ENDSEL” to conditionally include records. The first part

of the example has nested selects to include concatenated macro libraries if the

library names have been specified by the user (that is, if variables ASMMAC1 and

ASMMAC2 are not equal to the null variable Z).

In the second part of the example, select statements are used to conditionally

execute a load-and-go step. An imbed statement, “)IM”, is used to bring in a

separate skeleton for the load-and-go step.

Example of using file-tailoring services

The example shown illustrates file-tailoring services. For this example, assume that:

v LABLSKEL is a member in the file tailoring library. It contains these statements:

)DOT DALPHA

 NAME: &AA

 APARTMENT: &BB

 CITY: &CC

 YEAR: &ZYEAR

)ENDDOT

ZYEAR is the name of an ISPF system variable that contains the current year.

v DALPHA is a member of the table library. It contains these records:

 AA BB CC

Pauly John

Clark Joan

W590

Y200

Jones Beach

Bar Harbour

//ASM EXEC PGM=IFOXOO,REGION=128K

// PARM=(&ASMPARMS)

//SYSIN DD DSN=&ASMIN:(&MEMBER),DISP=SHR

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

)SEL &ASMMAC1 ^=&Z

// DD DSN=&ASMMAC1,DISP=SHR

)SEL &ASMMAC2 ^=&Z

// DD DSN=&ASMMAC2,DISP=SHR

)ENDSEL

)ENDSEL

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,2))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//SYSPRINT DD SYSOUT=(&ASMPRT)

)CM IF USER SPECIFIED "GO", WRITE OUTPUT IN TEMP DATA SET

)CM THEN IMBED "LINK AND GO" SKELETON

)SEL &GOSTEP=YES

//SYSGO DD DSN=&&&&OBJSET,UNIT=SYSDA,SPACE=(CYL,(2,1)),

// DISP=(MOD,PASS)

)IM LINKGO

)ENDSEL

)CM ELSE (NOGO), WRITE OUTPUT TO USER DATA SET

)SEL &GOSTEP=NO

//SYSGO DD DSN=&ASMOUT(&MEMBER),DISP=OLD

)ENDSEL

//*

Figure 32. Sample skeleton file

File—Tailoring Services

Chapter 3. Introduction to writing dialogs 85

This example creates a name and address list. The file-tailoring service requests

are:

v ISPEXEC FTOPEN

ISPEXEC FTINCL LABLSKEL

Issue ISPF commands to process skeleton LABLSKEL. Obtain values for dialog

variables AA, BB, and CC from table DALPHA. The resulting file-tailoring

output consists of one address label for each row of information in table

DALPHA.

FTOPEN opens both the file-tailoring skeleton and file-tailoring output files.

These files must be defined to ISPF before starting the ISPF session.

FTINCL performs the file-tailoring process by using the file-tailoring skeleton

named LABLSKEL. LABLSKEL contains the file-tailoring controls,)DOT and

)ENDDOT, which specify the use of table DALPHA.

You can issue multiple FTINCL commands to pull in more than one skeleton.

v ISPEXEC FTCLOSE NAME (LABLOUT)

Write the resulting file-tailoring output to a member named LABLOUT

SKELETON.

After the previous commands have been processed, the file-tailoring output file

LABLOUT SKELETON contains these records:

Using the PDF services

PDF services consist of the BRIF (Browse Interface), BROWSE, EDIF (Edit

Interface), EDIREC (edit recovery for EDIF), EDIT, and EDREC (edit recovery for

EDIT) services and a set of library access services.

BROWSE, EDIT, and EDREC

The BROWSE and EDIT services allow you to create, read, or change MVS data

sets or members of an ISPF library. An ISPF library is a cataloged partitioned data

set with a three-level name made up of a project, a group, and type. The ISPF

library can be private (available only to you) or can be shared by a group of users.

The BROWSE and EDIT services provide direct access to the Browse and Edit

options of PDF, bypassing the Browse mode on the View Entry panel and Edit

Entry panels.

The EDREC service, which you usually invoke before calling EDIT, helps you

recover work that would otherwise be lost if ISPF ended abnormally, such as after

a power loss.

 ┌─────────────────────────────┐

 │ │

 │ NAME: Pauly John │

 │ APARTMENT: W590 │

 │ CITY: Jones Beach │

 │ YEAR: 84 │

 │ NAME: Clark Joan │

 │ APARTMENT: Y200 │

 │ CITY: Bar Harbour │

 │ YEAR: 84 │

 │ │

 └─────────────────────────────┘

File—Tailoring Services

86 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

See the z/OS ISPF Services Guide for complete descriptions, including examples, of

the BROWSE, EDIT, and EDREC services.

BRIF, EDIF, and EDIREC

Two services, the Browse Interface (BRIF) service and the Edit Interface (EDIF)

service, allow dialogs to provide their own I/O for PDF Browse and Edit. These

services provide edit and browse functions for data accessed through

dialog-supplied I/O routines. BRIF and EDIF require that the invoking dialog

perform all environment-dependent functions (such as allocating, opening, reading,

writing, closing, and freeing files).

Use of the BRIF and EDIF services allows the type of data and data access

methods being employed by a dialog to be transparent to Browse and Edit. The

Edit Interface Recovery (EDIREC) service performs edit recovery for EDIF.

These services make it possible to implement functions such as:

v Edit/browse of data other than partitioned data sets or sequential files

v Edit/browse of in-storage data

v Pre- and post-processing of edited or browsed data.

See the z/OS ISPF Services Guide for descriptions and examples of BRIF, EDIF, and

EDIREC.

Library access services

The library access services can interact with the BROWSE and EDIT services and

can also give you access to ISPF libraries and to certain system data sets. These

services carry out functions such as opening a library, copying a library or library

member, and displaying a library’s members.

You can use the library access services with four types of libraries or data sets:

v An ISPF library known by project, group, and type

v A concatenated set of up to four ISPF libraries

v A single existing TSO or MVS partitioned or sequential data set

v A concatenated set of up to four MVS partitioned data sets.

The library access services only support data sets with these attributes:

v The data set is stored on a single DASD volume

v The record format is F, FB, V, VB, or U

v The data set organization is either partitioned or sequential

z/OS ISPF User’s Guide Vol I contains an explanation of the ISPF library structure.

See the z/OS ISPF Services Guide for complete descriptions, including examples, of

the library access services.

Another way you can maintain different levels or versions of a library member is

to use the software configuration and library manager (SCLM) utilities. SCLM is a

software tool that helps you develop complex software applications. Throughout

the development cycle, SCLM automatically controls, maintains, and tracks all of

the software components of the application. And, you can lock the version being

edited in a private library and then promote it to another group within the library

for further development or testing. See z/OS ISPF Software Configuration and Library

Manager Guide and Reference for more information about SCLM.

PDF Services

Chapter 3. Introduction to writing dialogs 87

Using the miscellaneous services

ISPF provides the CONTROL, GRINIT, GRTERM, GRERROR, GETMSG, LIBDEF,

LIST, LOG, and PQUERY services. You can find more information about these

services in the z/OS ISPF Services Guide.

CONTROL service

The CONTROL service allows a function to condition ISPF to expect certain kinds

of display output, or to control the disposition of errors encountered by DM

services. For example, some display conditions are:

LINE Expect line output to be generated by the dialog or by execution of

a TSO command. Optionally, the starting line can be specified.

LOCK Allow the next display without unlocking the terminal keyboard.

LOCK is generally used with the DISPLAY service to overlay a

currently displayed panel with an “in-process” message; for

example:

DISPLAY PANEL(panel-name) ...
CONTROL DISPLAY LOCK

DISPLAY MSG (message-id) ...

NONDISPL Do not display the next panel. Process the panel without actually

displaying it, and simulate the Enter key or END command.

REFRESH Refresh the entire screen on the next display. Typically used before

or after invoking some other full-screen application that is not

using DM display services.

SPLIT Enable or disable split-screen operation by a user as required by

the application.

The disposition of errors can be controlled as follows:

CANCEL Terminate the function on an error with a return code 12 or higher

from any service. A message is displayed and logged before

termination.

RETURN Return control to the function on all errors, with appropriate return

code. A message ID is stored in system variable ZERRMSG, which

can be used by the function to display or log a message.

The default disposition is CANCEL. If a function sets the disposition to RETURN,

the change affects only the current function. It does not affect lower-level functions

invoked by using the SELECT service, nor a higher-level function when the current

function completes.

GDDM services (GRINIT, GRTERM, and GRERROR)

The graphics initialization (GRINIT) service initializes the ISPF/GDDM interface

and optionally requests that ISPF define a panel’s graphic area as a GDDM

graphics field. The graphics termination (GRTERM) service terminates a previously

established GDDM interface. The graphics error block (GRERROR) service

provides access to the address of the GDDM error record and the address of the

GDDM call format descriptor module.

Miscellaneous Services

88 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

GETMSG service

The GETMSG service obtains a message and related information and stores them

in variables specified in the service request.

LIBDEF service

The LIBDEF service provides applications with a method of dynamically defining

application data element files while in an active ISPF session.

LIST service

The LIST service allows a dialog to write data lines directly (without using print

commands or utilities) to the ISPF list data set. You specify the name of the dialog

variable containing the data to be written on the LIST service request.

LOG Service

The LOG service allows a function to write a message to the ISPF log file. The user

can specify whether the log is to be printed, kept, or deleted when ISPF is

terminated.

PQUERY Service

The PQUERY service returns information for a specific area on a specific panel.

The type, size, and position characteristics associated with the area are returned in

variables.

Miscellaneous Services

Chapter 3. Introduction to writing dialogs 89

Miscellaneous Services

90 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 4. Common User Access (CUA) guidelines

This topic briefly describes how ISPF supports the Common User Access (CUA)

guidelines. The CUA guidelines define a user interface in terms of common

elements, such as the way information appears on a screen, and interaction

techniques, such as the way users respond to what appears on a screen. See the

SAA CUA Basic Interface Design Guide.

ISPF supports the CUA guidelines in several ways. You can:

v Define a list of function keys to be associated with each panel.

v Define an action bar and pull-downs on a panel.

v Define and display pop-up windows.

v Define and display help panels for field-level help, extended help, and keys

help. See Chapter 8, “ISPF help and tutorial panels,” on page 297 for more

information about CUA help panels.

With ISPF, the panel ID is displayed according to CUA defaults and the PANELID

command acts as a toggle.

ISPF also lets you indicate, for an application session, if you want to use CUA

defaults. If selected, the Panel display CUA mode option on the ISPF Settings

panel controls:

v The location of the function keys on the panel in relation to the command and

message lines.

v The appearance and display format of the keys.

Using the dialog tag language to define dialog elements

The Dialog Tag Language (DTL) is a set of markup language tags that you can use

to define dialog elements. You can use DTL tags in addition to or instead of ISPF

methods for defining panels, messages, and command tables. In addition, when

you define a panel using DTL tags, you can assign a specific keylist to be

associated with and displayed on that panel, if requested by the user.

The DTL defines the source information for the dialog elements, and the ISPF

dialog tag language conversion utility converts the source file to a format ISPF

understands. The z/OS ISPF Dialog Tag Language Guide and Reference explains in

detail how to create the various elements using the DTL and ISPF conversion

utility.

Keylists

The key assignments active for an application panel are defined and stored within

keylists. These key assignments allow the user to request commands and other

actions through the use of function keys. Key assignments for your application are

displayed in the function key area of application panels. Keylists can be shared

across all users by defining them using DTL. This creates an xxxxKEYS table that is

placed in the ISPTLIB concatenation. Users can modify keylists using the KEYS

and KEYLIST commands. Both commands invoke the Keylist utility. Modifications

to keylists are stored in the user’s application profile, thus they are called private.

© Copyright IBM Corp. 1980, 2007 91

You can view or modify keylists either through the KEYLIST command or the

Keylist settings choice from the Function keys pull-down on the ISPF Settings

panel. You can control whether your application uses keylists or not with the

KEYLIST command or the Keylist settings choice from the Function keys

pull-down on the ISPF Settings panel. You can also control whether you use

keylists as provided with the application or with user modifications. You assign the

keylist to a particular panel by using the keylist keyword on the)PANEL statement

or by using the keylist attribute on the PANEL tag. For a description of the panel

section, see “Defining the panel section” on page 225.

Action bars and pull-downs

An action bar is the panel element located at the top of an application panel that

contains action bar choices for the panel. Each action bar choice represents a group

of related choices that appear in the pull-down associated with the action bar

choice. When the user selects an action bar choice, the associated pull-down

appears directly below the action bar choice. Pull-downs contain choices that,

when selected by the user, perform actions that apply to the contents of the panel.

For complete details on coding action bars and pull-downs, refer to the z/OS ISPF

Dialog Tag Language Guide and Reference or the “Defining the action bar choice

section” on page 159.

Pop-up windows

Pop-up windows display information that extends the user’s interaction with the

underlying panel. When a pop-up is displayed, the user must finish interacting

with that pop-up window before continuing with the dialog in the underlying

panel.

The ADDPOP service allows your application to use pop-up windows. After you

issue the ADDPOP service, subsequent DISPLAY, TBDISPL, or SELECT service

calls display panels in that pop-up window until your application issues a

corresponding REMPOP service or issues another ADDPOP service.

You specify the location of the pop-up window using the ADDPOP service call.

Note: When you are running in GUI mode, this pop-up window location

specification is ignored. Default positioning is used.

You can specify the size of the window (width and depth) on the panel definition

BODY statement or use the WIDTH and DEPTH attributes on the DTL PANEL tag.

If you do not specify the size, the Dialog Manager displays the pop-up window in

a 76 X 22 window with a border.

Each pop-up window created as a result of a successful ADDPOP service call can

also have a window title. The title is embedded in the top of the window frame

border and can be only one line in length. If the title is longer than the window

frame, the dialog manager truncates it. To define the window title, set system

variable ZWINTTL to the desired window title text.

Note: If you are running in GUI mode, the value in ZWINTTL has a maximum

length of 255 characters and will be truncated without notice to the user at

display time if it does not fit on the panel.

92 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

This example will display three pop-up windows, as shown in Figure 33. The

window that panel B is displayed within will have the title POPUP WINDOW

TITLE.

PROC 0

ISPEXEC ADDPOP

ISPEXEC DISPLAY PANEL(A)

ISPEXEC ADDPOP POPLOC(F1)

SET ZWINTTL = POPUP WINDOW TITLE

ISPEXEC DISPLAY PANEL(B)

SET ZWINTTL =

ISPEXEC ADDPOP

ISPEXEC DISPLAY PANEL(C)

 The REMPOP service removes the current pop-up window. After you call the

REMPOP service, a subsequent DISPLAY service will either display a panel in the

full panel area of the screen or in a lower-level pop-up window, if it is active.

See z/OS ISPF Services Guide for a complete description of the ADDPOP and

REMPOP services.

Movable pop-ups

ISPF provides two ways for you to move the currently active pop-up window: the

WINDOW command, and manual movement using two terminal interactions and

no specific ISPF command. You can also move the window with any other method

you normally use to move windows on your workstation.

Note: The WINDOW command is disabled if you are running in GUI mode.

WINDOW command

The WINDOW command can be associated with a function key or can be typed on

the command line. The cursor placement specifies the new location for the

upper-left corner of the pop-up window frame. If the pop-up window does not fit

 Menu Utilities Compilers Options Status Help

 - ┌───────────────────────────────────┐ -------------------------------------

 │ -------- Panel A ------------ │ ption Menu

 │ │

 0 │ Field 1 ___________ │ ters User ID . : USERID

 1 │ Field 2 ___________ │ istings Time. . . : 14:27

 2 │ Field 3 . . . ┌───────── POPUP WINDOW TITLE ──────────┐ . : 3278

 3 │ Field 4 . . . │ --------- Panel B ------------ │ . : 1

 4 │ │ │ . : ENGLISH

 5 │ │ This is Panel B │ . : ISR

 6 │ │ ┌──┐ OC

 7 │ COMMAND ===> ___ │ Fiel │ --------- Panel C ------------ │ D

 8 │ F1=HELP F2=S │ Fiel │ │

 9 │ F4=RETURN F5=R │ Fiel │ This is Panel C │ 6,B

 1 └────────────────── │ Fiel │ │ 4.1

 │ │ Field E ___________ │

 Enter X to Terminate │COMMAN │ Field F ___________ │

 │ F1=HE │ Field G ___________ │

 │ F4=RE │ Field H ___________ │

 └────── │ │

 │ COMMAND ===> _________________ │

 Option ===> TSO ADDP │ F1=HELP F2=SPLIT F3=END │

 F1=Help F2=Split F3 │ F4=RETURN F5=RFIND F6=RCHANGE │

 F10=Actions F12=Cancel └──┘

Figure 33. Example panel displaying three pop-up windows

Chapter 4. Common User Access (CUA) guidelines 93

on the physical screen at the specified location, it is repositioned to fit following

the current pop-up window positioning rules. The cursor is placed in the same

relative position it occupied before a dialog or help pop-up window was moved.

If the cursor location would be covered as a result of moving a modeless message

window, the cursor is repositioned to the first input field on the active panel. If an

input field does not exist, the cursor is positioned in the upper-left corner of the

active panel. The cursor is returned to its intended location if the modeless

message window is moved to a location that no longer conflicts with cursor

display. Cursor positioning is not affected by an input field that becomes protected

as a result of a modeless message window position unless the cursor itself would

be covered. In other words, the cursor can be positioned on a protected input field.

The WINDOW command is an immediate action command. Panel processing is not

performed when this command is used.

If the WINDOW command is typed in the command line, the cursor should be

moved to the desired window position before pressing Enter.

If the WINDOW command is included in the keylist associated with the currently

active application panel, the user can move the cursor to any position on the

screen, press the function key assigned to the WINDOW command, and the

pop-up is repositioned to the user’s cursor position. The WINDOW command can

be included in the keylist by the application developer, or the user can use the

KEYLIST utility to add it to the keylist.

For panels that do not include the KEYLIST keyword in the)PANEL statement, the

application can assign the WINDOW command to a ZPFnn system variable. The

user can also associate WINDOW with a function key by using the ZKEYS

command to access the function key assignment utility.

If the split screen is used, the pop-up cannot be moved to a different logical screen.

The new pop-up window location must be in the same logical screen in which the

pop-up was originally located. A pop-up is not displayed over the split line. The

split line cuts off the pop-up at the split line location; the pop-up is not

automatically repositioned to fit above the split line.

Note: Pull Down Choice (PDC), Action Bar is also a pop-up window, so the split

screen line cuts off the Action Bar location, too. The pop-up is not

automatically repositioned to fit above the split line.

If the WINDOW command is requested when pop-up windows are not active, a

message is displayed to the user. A pop-up window containing an Action Bar

panel cannot be moved while a pull-down is actively displayed. A message is

displayed to the user if the WINDOW command is requested during this

condition.

Manual movement

The second method for moving pop-up windows involves two terminal

interactions but does not require a unique ISPF command. A user can request

window movement by placing the cursor anywhere on the active window frame

and pressing Enter. ISPF acknowledges the window move request by displaying

WINDOW MOVE PENDING message. The alarm will sound if the terminal is so

94 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

equipped. The message text will be yellow/high intensity if the Panel display CUA

mode option on the ISPF Settings panel has been selected. Otherwise, the message

text will be white/low intensity.

Place the cursor where you want the upper-left corner of the window frame to be,

and press Enter a second time. The window is moved to the new location as

though the WINDOW command had been issued. The rules for cursor placement

inside the window, and window placement on the physical display, are the same as

those described for the WINDOW command.

Pop-up movement considerations

Modeless and modal message pop-up windows can be moved in the same manner

as dialog pop-up windows.

Only the active pop-up window can be moved. If a modal or modeless message

pop-up is displayed over a dialog pop-up window, only the message pop-up

window can be moved. The underlying dialog pop-up window cannot be moved

while a message pop-up window is displayed over it.

Input fields that are partially or totally covered by a pop-up window become

protected fields (data cannot be entered into the field). If a field becomes totally

uncovered as a result of moving the pop-up window, the field is restored to an

unprotected field (data can be entered into the field).

Field-level help

Field-level help provides help panels for fields defined on an application panel.

When the cursor is on a field and you request HELP, ISPF displays the help panel

defined for that field. See “Defining the HELP section” on page 222.

Extended help

Extended help provides general information about the contents of a panel. The

information in extended help can be an overall explanation of items on the panel,

an explanation of the panel’s purpose in the application, or instructions for the

user to interact with the panel. The user invokes extended help by issuing the

command EXHELP. EXHELP requests ISPF to display help text for the entire panel.

For more information about help, see “.HELP” on page 292 and Chapter 8, “ISPF

help and tutorial panels,” on page 297.

Keys help

Keys help provides the user with a brief description of each key defined for a

panel. You define the contents of this help panel. The user invokes keys help by

issuing the command KEYSHELP.

KEYSHELP requests ISPF to display the help panel for the current keylist. The help

panel name can be provided as part of the keylist definition. If the keys help panel

is not identified in the keylist definition, it can be supplied in the ZKEYHELP

system variable. Use separate ZKEYHELP variable values for each keys help panel

to be displayed.

Chapter 4. Common User Access (CUA) guidelines 95

Reference phrase help

Reference phrase (RP) help is available on all panels. Place the cursor on a

highlighted reference phrase within a panel, request help, and you receive the help

panel defined for that reference phrase.

When a panel with reference phrases is displayed for the first time, the cursor is

positioned in the upper-left corner. After a reference phrase is selected and control

is returned to the original panel, the panel scrolls automatically to put the cursor

on the reference phrase from which the reference phrase help was invoked. The

exact scroll position might not be the same as when the reference phrase help was

invoked. ISPF positions the reference phrase at the top of the display is scrolling is

necessary to display the reference phrase help field. The reference phrase is an

input-capable field that allows tabbing. Therefore, the reference phrase text is

refreshed whenever the panel is redisplayed.

Reference phrase help panels themselves can also contain reference phrases. When

a reference phrase help panel is canceled, the panel from which reference phrase

help was requested is redisplayed. All other help facilities are available from a

reference phrase help panel.

The TYPE(RP) attribute in the panel attribute section is used to identify a reference

phrase in a panel. See “Defining the attribute section” on page 172. An entry is

then placed in the)HELP section of the panel for each reference phrase attribute

coded in the)BODY or optional)AREA panel sections. This example is a)HELP

section reference phrase definition:

)HELP

 FIELD(ZRPxxyyy) PANEL(panel-name)

xx 00 for a reference phrase defined in)BODY section and 01 to 99 for the

number of the scrollable area in which the reference phrase is defined.

 Each scrollable area is assigned a sequential number based on its relative

position within the panel body. The scrollable area closest to the upper-left

corner of the panel body is assigned number 01 with each additional

scrollable area, scanning left to right, top to bottom, assigned the next

sequential number. A maximum of 99 scrollable areas in any given panel

may contain reference phrases.

yyy 001 to 999 for the relative number of the reference phrase within the panel

body or within a particular scrollable area.

panel-name

Name of the help panel to be displayed when HELP for this reference

phrase is requested.

 A reference phrase can wrap around multiple terminal lines in panels that are not

displayed in a window. A reference phrase that logically wraps in a pop-up

window requires the beginning of each wrapped line to contain a RP field

attribute, and there must be an entry in the)HELP section for each wrapped line.

This is also true for panels containing the WINDOW() keyword that are not

displayed in a pop-up window. The additional)HELP section entries would

normally be pointing to the same panel.

The example in Figure 34 on page 97 illustrates both single and multiple line

reference phrases.

96 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

START service

You can use the START service to start a dialog in a new logical screen. This

function is similar to the function nesting made available with action bars except

that the “nesting” occurs in a new logical screen.

You can invoke the START service in any of these ways:

v From any command line, you can enter a command in this form:

START some_dialog

some_dialog can be:

– A command from the command table; for example, MYCMD1

)PANEL

)ATTR

 # TYPE(RP)

 $ AREA(SCRL) EXTEND(OFF)

)BODY

 +This is sample text. This is a #Reference Phrase+.

 +This is an example of a #Reference Phrase being

 physically continued to the next line.+

 + *********************

 + *$SAREA1 $* ****************

 + *$ $* *$SAREA2 $*

 + *$ $* *$ $*

 + ********************* *$ $*

 + ********************* *$ $*

 + *$SAREA3 $* *$ $*

 + *$ $* ****************

 + *$ $*

 + *********************

 +This is an example of a #Reference Phrase being+

 #logically continued to the next line.+

 +

)AREA SAREA1

 + +

 #Area 01 Ref Phrase+

 + +

)AREA SAREA2

 + +

 + #Area 02+ +

 + #Reference++

 + #Phrase+ +

)AREA SAREA3

 + +

 #Area 03 Ref Phrase+

 + +

)HELP

 FIELD(ZRP00001) PANEL(BODY0001)

 FIELD(ZRP00002) PANEL(BODY0002)

 FIELD(ZRP00003) PANEL(BODY0003)

 FIELD(ZRP00004) PANEL(BODY0003)

 FIELD(ZRP01001) PANEL(AREA0101)

 FIELD(ZRP02001) PANEL(AREA0201)

 FIELD(ZRP02002) PANEL(AREA0201)

 FIELD(ZRP02003) PANEL(AREA0201)

 FIELD(ZRP03001) PANEL(AREA0301)

)END

Figure 34. Reference phrase help example

Chapter 4. Common User Access (CUA) guidelines 97

– A command with parameters (must be in quotes); for example,

'MYCMD1 PARM1'

– A dialog invocation; for example, PANEL(MYPAN1), or

'PGM(MYPGM1) PARM(MYPARM1,MYPARM2)'

v You can code a pull-down choice,

ACTION RUN(START) PARM(some_dialog)

where some_dialog is the same as previously outlined.

v You can code a selection panel option,

'PGM(ISPSTRT) PARM(some_dialog)'

For example,

&ZSEL = TRANS(&XX

 0,’PGM(ISPSTRT) PARM(PGM(MYPGM0))’

 1,’PGM(ISPSTRT) PARM(PGM(MYPGM1) PARM(MYPARM1))’

 2,’PGM(ISPSTRT) PARM(MYCMD1 MYPARM2)’

 3,’PGM(ISPSTRT) PARM(PANEL(MYPANEL1))’

v From a dialog, you can invoke,

ISPEXEC SELECT PGM(ISPSTRT) PARM(some_dialog)

where some_dialog is the same as previously described.

Notes:

1. The some_dialog must not exceed 249 characters. It will be truncated at 249

without warning.

2. Do not use either WSCMD or WSCMDV in your specification of some_dialog.

3. For ISPF functions that have service interfaces, such as EDIT and BROWSE,

you should use the service invocations. Using ISPSTRT passing the selection

strings from panel ISR@PRIM does not work in all situations and is not

supported.

If the maximum number of logical screens do not exist when the START command

is invoked and:

v some_dialog is a command from the command table, the new screen is invoked

with the default initial command (in non-display mode) and the command is

run. When the user ends the dialog this new screen still exists.

v if some_dialog is specified as PGM(xxx), CMD(xxx), or PANEL(xxx), the new

screen is invoked with PGM(xxx), CMD(xxx), or PANEL(xxx) as the initial

command, program, or panel. The result is that when you end the xxx dialog,

this new screen is terminated.

If the maximum number of logical screens has already been reached when the

START command is invoked, the specified some_dialog is executed on top of the

currently displayed screen. The result is that when you end the dialog, ISPF

returns to the previously displayed screen.

On 3270 displays, if ISPF is not in split screen mode the START command and

ISPSTRT program split the screen at the top or bottom line of the display. If ISPF is

already in split screen mode, ISPF starts the new screen in the opposite screen,

using the existing split line location.

98 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 5. Graphical User Interface (GUI) guidelines

This topic provides information that dialog developers need to write or adapt

dialogs to run in GUI mode on a workstation.

How to display an application in GUI mode

Use the GUI parameter on the ISPSTART command to invoke an application in

GUI mode. For example, this command starts ISPF in GUI mode on a workstation

at the specified IP address:

ISPSTART GUI(IP:9.67.229.115)

For more information about ISPSTART, see “Syntax for issuing the ISPSTART

command” on page 10. For more information about running in GUI mode, refer to

the topic on the ISPF user interface in z/OS ISPF User’s Guide Vol I.

 where:

LU:address:tpname

The workstation’s Advanced Program-to-Program Communication (APPC)

network address and tpname.

 An APPC address can be in fully-qualified LU name format or in symbolic

destination name format. A fully-qualified LU name format consists of a

network identifier and an LU name, separated by a period. For example,

USIBMNR.NRI98X00 is a fully-qualified LU name.

 An APPC address in symbolic destination name format consists of a 1- to

8-character name such as JSMITH. The symbolic destination name must be

defined as a DESTNAME and the corresponding fully-qualified LU name must

be defined as the associated PARTNER_LU in the APPC/MVS side information.

 If specified, the tpname is used to construct the names of the two transaction

programs required to support an ISPF Client/Server connection. The ISPF

Client/Server function appends different single alphabetic characters to the

supplied name to form the actual names of the two APPC transaction

programs.

 If the tpname is used, the same tpname must be specified from the Options

action bar choice on the WSA.

IP:address:port

The workstation’s Internet Protocol (IP) address and TCP/IP port.

 A TCP/IP address can be in dotted decimal format or in domain name format.

Dotted decimal format is a sequence of decimal numbers separated by periods,

for example, 9.87.654.321.

 A TCP/IP address in domain name format consists of one or more domain

qualifiers separated by periods. The minimum specification for addresses

GUI(LU:address:tpname|IP:address:port|FI:|,NOGUIDSP)

 TITLE(title) FRAME(STD|FIX|DLG)

 GUISCRW(screen-width) GUISCRD(screen-depth)

 CODEPAGE(codepage) CHARSET(character_set)

© Copyright IBM Corp. 1980, 2007 99

within the same domain is a TCP/IP host name, for example, jsmith. The

fully-qualified domain name for jsmith is formed by appending the appropriate

subdomain name and root domain name to jsmith, such as

jsmith.raleigh.ibm.com. To use domain naming, a domain name server must

be active and providing domain name resolution for domain names within

your TCP/IP network. The domain name server address is determined by the

value of the NSINTERADDR statement in the TCP/IP configuration data set.

ISPF must be able to locate the TCP/IP configuration data set as described in

the section on configuring TCP/IP connections in the z/OS ISPF User’s Guide

Vol I.

Note: If address is set to an asterisk (*) the value of the system variable

ZIPADDR is used. ZIPADDR contains the TCP/IP address of the

currently connected TN3270 workstation.

FI: Specifies that you want to search a file allocated to DD ISPDTPRF for the

user’s network protocol and workstation address to be used when initiating a

workstation connection or GUI display. For example, the system programmer

could maintain a file containing all of the user’s workstation addresses so all

users would be able to use the same logon procedure or startup CLIST to run

ISPF GUI.

 The file itself can be sequential or a member of a PDS. It can be fixed block

(FB) or variable blocked (VB). Each line of the file should be formatted as

follows:

userid WORKSTAT protocol_id:network_address

Where:

userid user’s TSO userid

protocol_id network protocol identifier: ip for TCP/IP or lu for APPC.

network_address

workstation address

For example, KRAUSS WORKSTAT ip:7.30.200.94 might be one line of your file.

 EXAMPLES OF ISPSTART SYNTAX USING FI: OPTION:

 To specify that you want ISPF to search the file allocated to ISPDTPRF DD for

your network address when connecting to the workstation from ISPSTART,

and to run ISPF in GUI mode, enter ISPSTART GUI(FI:).

 To specify that you want to search the file, but to run ISPF in 3270 mode, enter

ISPSTART GUI(FI:,NOGUIDSP).

NOGUIDSP

Specifies that you want to make a connection to the workstation, but DO NOT

want ISPF to display in GUI mode. For more information about the

NOGUIDSP parameter, refer to page 14.

TITLE(title)

The default value for the title bar variable. This value has a maximum length

of 255 characters and can be truncated without notice to the user at display

time.

FRAME(STD|FIX|DLG)

Specifies that the first window frame displayed be a standard (STD), fixed

(FIX), or dialog (DLG) window frame.

100 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Note: Pop-up panels are always displayed in dialog window frames.

GUISCRW(screen-width)

Enables you to specify a screen width different than that of the emulator or

real device from which you enter the ISPSTART command. If you do not

specify GUISCRD, the depth is that of the emulator or real device.

 If GUISCRW is different than the emulator or real device and GUI initialization

fails, ISPF does not initialize. Dialogs started with dimensions other than those

of the emulator or real device that use the GRINIT service cannot display

GDDM screens.

GUISCRD(screen-depth)

Enables you to specify a screen depth different than that of the emulator or

real device from which you enter the ISPSTART command. If you do not

specify GUISCRW, the width is that of the emulator or real device.

 If GUISCRD is different than the emulator or real device and GUI initialization

fails, ISPF does not initialize. Dialogs started with dimensions other than those

of the emulator or real device that use the GRINIT service cannot display

GDDM screens.

 The variable ZGUI is set to the workstation address (in character format) if

ISPSTART is issued with the GUI parameter; ZGUI is set to blank if ISPSTART

is issued without the GUI parameter.

Note: Users can force the application into GUI mode using the ISPF Settings

panel (option 0). The display address specified on this panel is saved

across ISPF sessions.

CODEPAGE(codepage) CHARSET(character_set)

When running in GUI mode or connecting to the workstation, these values are

used as the host code page and character set in translating data from the host

to the workstation, regardless of the values returned from the terminal query

response.

Other considerations

Action Bars and Pull-Down Menus

Action bars are responsive entities at the workstation and do not require

an interrupt to the host to display a pull-down menu. All)ABCINIT

sections run before sending the panel to the workstation. The)ABCPROC

section runs after the pull-down has been selected at the workstation.

Title Bars

Various types of data can appear in the title bar, depending on these values

for which ISPF finds data is displayed in the title bar:

v The value defined in the application dialog variable ZWINTTL is used if

the panel is displayed in a pop-up

v The value defined in the application dialog variable ZAPPTTL.

v The value specified in the title variable on the TITLE parameter of the

ISPSTART command.

v The value specified in the GUI Title field on the Initiate GUI Session

panel available in option 0.

v The value specified in the title variable on the TITLE parameter of the

WSCON service.

v Your user ID.

Chapter 5. Graphical User Interface (GUI) guidelines 101

ZWINTTL and the title variable on ISPSTART have a maximum length of

255 characters and can be truncated without notice to the user at display

time if they do not fit on the panel.

Messages

A short or long message that would appear in a pop-up window in

non-GUI mode is displayed in a message box in GUI mode. The message

box includes the appropriate icon as defined by CUA guidelines:

v .TYPE=NOTIFY produces a question mark (?).

v .TYPE=WARNING produces an exclamation point (!).

v .TYPE=ACTION or .TYPE=CRITICAL produces a red circle with a

diagonal line across it.

Closing a Window

If a user closes a window (that is, selects Close from the system menu),

ISPF returns the CANCEL, END, EXIT, or RETURN command to the

dialog, as specified on the GUI Settings panel (option 0).

Function Keys

You cannot give a function key the default focus.

Check Boxes

Check boxes are supported at the workstation if CKBOX(ON) is set for a

1-character entry field that is followed by an output field. See “CKBOX

Keyword” on page 181 for more information.

List Boxes

List boxes are supported at the workstation. See “LISTBOX Keyword” on

page 190 for more information.

Drop-down Lists

Drop-down lists are supported at the workstation. See “DDLIST Keyword”

on page 184 for more information.

Group Boxes

Group boxes are supported at the workstation. See “Group box” on page

205 for more information.

Combination Boxes

Combination boxes are supported at the workstation. See “COMBO

Keyword” on page 183 for more information.

Unavailable Choices

Unavailable choices for check boxes, radio buttons, and push buttons are

supported at the workstation. See “UNAVAIL Keyword” on page 200 for

more information.

Mnemonics

Mnemonics are supported at the workstation in action bar and pull-down

menu choices using the MNEM keyword on the ABC and PDC statements.

Separator Bars

Separator bars group logically related choices in pull-down menus. Use the

PDC keyword PDSEP to display separator bars.

Accelerators

Accelerators are assigned to menu choices so those choices can be initiated

quickly, even when the menu that the choice appears on is not currently

displayed. Use the PDC keyword ACC to implement accelerators.

102 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Radio Buttons

Radio buttons provide a way to select mutually exclusive choices. Use the

)ATTR keyword RADIO to set radio buttons.

Enter Key

An Enter key push button appears, by default, on all panels. You can

change the text on the push button using the ZENTKTXT variable.

Note: If a dialog sets ZENTKTXT to blanks, the Enter push button is not

displayed even if you select the Display Enter Key option on the

GUI Settings panel available from option 0.

APL/TEXT Character Sets

The ZGE variable is set to NO when you are running in GUI mode. Any

character defined with GE(ON) displays as a blank.

Cursor Placement

.CURSOR can be set only to an input or push button (point-and-shoot)

field. If the application attempts to set the cursor to any other field, ISPF

ignores the placement and uses the default cursor placement. The up and

down cursor keys move vertically through a group of input fields,

point-and-shoot fields, and pull-down choices.

Images

ISPF supports image files in the Graphics Interchange Format (GIF) when

running in GUI mode.

 ISPF ships sample files in the sample library SISPSAMP. The panel

ISR@PRIM uses three of the images (ISPFGIFL, ISPFGIFS, and ISPEXIT).

 To use images, store the image files on the host in a partitioned data set

and allocate this image data set to ddname ISPILIB before starting ISPF.

For more information about allocating this image library, refer to the topic

″Getting Ready to Run on MVS″ in the z/OS ISPF User’s Guide Vol I.

Some general GUI restrictions

This topic describes some restrictions that apply when you run ISPF in GUI mode.

Cursor Placement

.CURSOR can be set only to an input or push button (point-and-shoot)

field. If the application attempts to set the cursor to any other field, ISPF

ignores the placement and uses the default cursor placement.

Character-Level Color, Intensity, and Highlighting

Character-level color, intensity, and highlighting are not supported when

you are running in GUI mode.

Field-Level Intensity and Highlighting

Field-level intensity and highlighting are not supported when you are

running in GUI mode.

Graphic Areas

Graphic areas are not supported. When a GRINIT statement is

encountered, the user receives a message that panels with graphics cannot

be displayed. The user may choose to continue. When a panel with

graphics is encountered, a pop-up is displayed that enables you to specify

that the panel be displayed on the host emulator session or on the

workstation without the graphic.

Chapter 5. Graphical User Interface (GUI) guidelines 103

Notes:

1. If you are in split-screen mode, the graphic area panel cannot be

displayed on the host session.

2. If you specified GUISCRD or GUISCRW values on the ISPSTART

invocation that are different from the actual host screen size, GDDM

cannot be initialized, and the GRINIT service ends with a return code

of 20.

Pop-Up Windows and Message Pop-Up Positioning

Dialog-specific pop-up positioning is not supported if you are running in

GUI mode; that is, the POPLOC, ROW, and COLUMN parameters on the

ADDPOP service are ignored. The MSGLOC parameter on the DISPLAY,

SETMSG, and TBDISPL services is ignored.

SKIP Attribute

The panel attribute SKIP(ON) is ignored on the GUI display.

OUTLINE Attribute

The OUTLINE attribute is ignored on the GUI display.

3290 Partition Mode

You cannot invoke ISPF in GUI mode if you are configured to run ISPF in

3290 partition mode.

104 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 6. Panel definition statement guide

You can create ISPF panels in one of three ways:

1. Use the Dialog Tag Language (DTL) and ISPF DTL conversion utility only. With

DTL, you create a source file containing DTL tags that define what information

you want for each panel. This source file is then processed through the ISPF

conversion utility to produce a preprocessed ISPF panel library member ready

for display.

2. Use DTL and panel definition statements. This option allows you to stop the

conversion process at the ISPF panel definition source level. You can then edit

the resulting panel definition source file using any of the panel definition

statements available in this document.

3. Use panel definition statements only. Using panel definition statements, you

define panels closely resembling the finished panel. Each character position in

the panel definition corresponds to the same relative position on the display

screen.

To create panels with DTL or to learn how to capture the panel definition source

file, refer to the z/OS ISPF Dialog Tag Language Guide and Reference.

This topic explains how to create panels using the panel definition statements.

(This information applies to the second and third options described above.) Both

general overview information on panel definition and specific information on each

panel section is included. The topics are arranged as follows:

v An introduction to the panel definition sections

v General tips and guidelines for formatting panels

v Syntax rules and restrictions for panel definition

v A discussion of each panel section

v Using Z variables as field name placeholders

v Panel processing considerations

v Support for panel user exit routines

v Special requirements for defining menus, table display panels, and panels with

dynamic or graphic areas.

Figure 36 on page 110 shows an example panel definition which uses CUA

panel-element attributes. See Figure 62 on page 214 for an example panel definition

that does not use CUA panel-element attributes.

Notes:

1. You can use the ISPDPTRC command to trace both the execution of panel

service calls (DISPLAY, TBDISPL, and TBQUERY) and the processing that

occurs within the Dialog Manager panel code. For more information, refer to

“Panel trace command (ISPDPTRC)” on page 367.

2. When not in TEST mode, the most recently accessed panel definitions are

retained in virtual storage for performance reasons. If you have modified a

panel, use TEST mode to ensure that the updated version of the panel is picked

up by ISPF services. See “ISPF test and trace modes” on page 27 for more

information.

© Copyright IBM Corp. 1980, 2007 105

Introduction to panel definition sections

Each panel definition consists of a combination of the sections described in Table 4.

The sections)CCSID to)PROC, if used, must be in the order listed in this table.

The sections)FIELD,)HELP,)LIST, and)PNTS, if used, can be in any order as long

as they appear after the sections)CCSID to)PROC).)END must be the last section.

 Table 4. Panel definition sections

Section Required Description

)CCSID No CCSID section. Specifies the Coded Character Set Identifier

(CCSID) used in the panel definition. If used, panel text

characters are translated to the terminal code page for

display.

)PANEL No Panel section. Specifies a keylist to be used during the

display of the panel, and identifies where to find the keylist.

Specifies that the panel is to be displayed in CUA mode.

)ATTR No Attribute section. Defines the special characters in the body of

the panel definition that represent attribute (start of field)

bytes. You can override the default ISPF attribute characters.

)ABC No Action bar choice section. Defines a choice in the action bar,

its associated pull-down choices, and the actions to be taken

for each pull-down choice.

)ABCINIT Yes, if)ABC is

specified

Action bar choice initialization section. Specifies processing

that is to occur for an action bar choice before the panel is

displayed.

)ABCPROC No Action bar choice processing section. Specifies processing that

is to occur for an action bar when the panel is submitted for

processing.

)BODY Yes Body section. Defines the format of the panel as seen by the

user and defines the name of each variable field on the panel.

)MODEL Yes, for table

display

Model section. Defines the format of each row of scrollable

data. This section is required for table display panels. Only

one)MODEL section is allowed per panel.

)AREA No Scrollable area definition section. Defines a scrollable section

of the panel.

)INIT No Initialization section. Specifies the initial processing that is to

occur before the panel is displayed. This section is typically

used to define how variables are to be initialized.

)REINIT No Reinitialization section. Specifies processing that is to occur

before a panel is redisplayed.

)PROC No Processing section. Specifies processing that is to occur after

the panel has been displayed or redisplayed. This section is

typically used to define how variables are to be verified and

translated.

)FIELD No Scrollable field section. Defines a field as scrollable, giving it

the ability to display and input a variable that is larger than

the display area that the dialog variable occupies.

)HELP No Field help section. Specifies the help panels to display when

help is requested for a field, list column, action bar choice, or

pull-down choice defined in the panel or reference phrase.

)LIST No List section. Specifies a list to build on the panel.

)PNTS No Point-and-shoot section. Contains an entry for each field on a

panel that has been designated as a point-and-shoot field.

)END Yes End section. Specifies the end of the panel definition, and

consists only of the)END statement. ISPF ignores any data

that appears on lines following the)END statement.

106 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Guidelines for formatting panels

Consider using the ISPF edit model facilities to help you create panel definitions.

When using Edit to create a panel definition, specify NUMBER OFF to prevent

numbers from appearing in the file. Numbers cause a panel syntax error when you

attempt to process the panel definition.

ISPF panel definitions are stored in a panel library and are displayed by means of

the SELECT, DISPLAY, or TBDISPL service. Each panel definition is referred to by

its name, which is the same as the member name in the library.

You can create or change panel definitions by editing directly into the panel library.

No compilation or preprocessing step is required. Use the name of this panel

library member as the panel-name parameter when requesting dialog services,

such as DISPLAY and SELECT.

As shown in Figure 35, the first three displayable lines below the action bar, if

present, in a panel definition include:

v Panel ID and title area

v System-defined (default) areas for message display

v A command/option field

v A scroll field, if applicable.

You can override the location of the long message area and command field from

the ISPF Settings panel.

Action Bar Line

The action bar line displays the action bar choice-description-text. You can

define multiple action bars for a panel. A separator line should follow the

last action bar line. ISPF considers the panel line following the last action

bar choice as part of the action bar area. See “Defining the action bar

choice section” on page 159.

Title Line

The title line should contain a centered title indicating the function being

performed or, where appropriate, information critical to that function. If

not running in GUI mode, up to 17 characters at the start of this line can

be overlaid by the system commands SYSNAME, USERID, SCRNAME, or

PANELID. Do not use the last 26 characters of this line to display critical

information if messages are to be shown in the default short message area.

Short Messages

If short messages are used, they should provide a brief indication of either:

v Successful completion of a processing function

v Error conditions, accompanied by audible alarm.

 ┌───┐

 │ Action Bar Line or Lines │

 │ Separator Line │

 ├───────────────────────────────────┬───────────────┤

 │ Panel ID Title │ Short Message │

 ├───────────────────────────────────┴──────┬────────┤

 │ Command/Option │ Scroll │

 ├──┴────────┤

 │ Long Message │

 └───┘

Figure 35. Sample panel definition format

Chapter 6. Panel definition statement guide 107

Short messages temporarily overlay information currently displayed at the

end of the first line, and are removed from display on the next interaction.

The original information is redisplayed when the message is removed.

 Use short messages consistently throughout the application, or not at all.

 For table display, the short message area contains a top-row-displayed

indicator, except when overlaid by a function-requested message. Attribute

bytes in the short message The TBDISPL service automatically generates

this indicator, and replaces data that was in the panel definition in that

area. Attribute bytes in the short message area can cause the top-row

displayed indicator to be unreadable.

Command/Option Line

The command/option line generally contains the command field. This

same field should be used for option entry on menus. The command field,

when the first input field on the panel or when identified by using the

keyword CMD on the header of the panel body section, can be named

using any valid variable name. However, the name ZCMD is generally

used.

 Cursor placement for viewing a panel differs, depending on the use of the

name ZCMD or other names. When you use ZCMD and cursor placement

is not explicitly specified, ISPF skips over a blank command field to place

the cursor on a following input field. When you use a name other than

ZCMD, ISPF does not skip over a blank command field when placing the

cursor during display.

Scroll Amount

For table display, Edit, and Browse panels, as well as panels with scrollable

dynamic areas, the scroll amount field should be on the right side of the

command line. The scroll amount field must be the first input field

following the command field and must be exactly 4 characters in length. A

scroll amount field is not meaningful for other types of panels and should

be omitted from them.

Long Messages

The long message line should generally be left blank, so that long

messages do not overlay any significant information. An exception to this

rule might be made in the case of table display panels, to allow as much

scrollable data as possible to fit on the screen. An input field, such as the

command field, should not be located on the same line on which long

messages are displayed. The display of long messages will be

superimposed on the input field, and results are unpredictable.

Requirements for specifying message and command line

placement

The placement of the command line and long message field at the bottom of a

logical screen is a user-definable option. Placement is controlled by the system

variable ZPLACE. You can select or deselect Command line at bottom on the ISPF

Settings panel, and the setting changes the value of ZPLACE. ZPLACE can also be

changed in a dialog.

The value of ZPLACE is stored in the application profile pool. To change the value,

use the VPUT statement in a panel definition, the VPUT service in a dialog

function, or the ISPF Settings panel options. None of these settings takes priority

over the others. For example, an ISPF Settings panel selection can change what a

dialog set, and vice versa.

108 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

If the panel specifies ASIS on the)BODY statement for a panel, the command and

message lines are not repositioned, even if you specify placement at the BOTTOM.

The command line moves only if all of these are true:

v For primary windows:

1. If the WINDOW(w,d) keyword is specified on the header statement where w

is less than the screen width, then:

a. The keyword ASIS must not be specified on the)BODY header statement.

b. The first character of the command line must be an attribute character.
2. If the WINDOW(w,d) keyword is specified on the header statement where w

is equal to the screen width or the WINDOW keyword is not specified, then:

a. The keyword ASIS must not be specified on the)BODY header statement.

b. The first and last character of the command line must be an attribute

character, and one of these is true:

1) There is an attribute byte in the first column of the line following the

command line.

2) There is an attribute byte in the last column of the line preceding the

command line.
3. For pop-up windows, the keyword ASIS is not specified on the)BODY

header statement.

Command lines that move in panels designed for primary windows will continue

to move if these panels are displayed in pop-up windows. In addition, command

lines in panels created using the DTL and converted using the ISPF conversion

utility will move in both primary and pop-up windows.

If requirement 2b1 is false, but 2b2 is true, ISPF changes the attribute byte in the

last column of the line preceding the command line to match the attribute byte in

the last column of the command line. This gives the same result as 2b1.

For the long message line to be moved, the panel must be designed so that the

system default is used to position the long message. That is, an alternate long

message field cannot be specified by the panel designer using the keyword ’LMSG’

on the)BODY header statement.

The long message line is not moved unless the command line is moved, but the

command line is moved regardless of whether the long message field is moved.

Additional L/title>

v Avoid cluttered panels. Split “busy” panels into two or more simpler panels that

have less information and are easier to read. Use scrollable areas where

appropriate.

v Do not use the last available line in a panel body. For example, if the dialog can

be used on 24-line terminals, limit the body to 23 lines, or less. This is because in

split-screen mode the maximum length of a logical screen is one less than the

length of the physical screen.

The PFSHOW|FKA command usually requires a minimum of two lines of a

panel for displaying function key status. Therefore, you should leave the bottom

two panel lines blank.

v Place important input fields near the top of the panel and less important fields,

especially optional input fields, further down. In split-screen mode, the bottom

of the panel might not be visible unless you reposition the split line.

v Place important input fields near the top of a scrollable area to minimize the

need for scrolling.

Chapter 6. Panel definition statement guide 109

v Place the command line near the top of the panel. If the command line is near

the bottom and you enter split-screen mode, the command line cannot be visible

on the screen. Therefore, if you do not have function keys, you might not be

able to continue processing the dialog. If, for a particular session, you will not be

entering the split-screen mode, you can use the option 0 (Settings) to specify that

the command line be placed at the bottom of the screen. However, if you want

to place the command line at the bottom, use the ZPLACE system variable.

v Where practical, align fields vertically on a panel, especially input fields. Group

related input fields under a common heading. Minimize the use of multiple

input fields on the same line, so that the NEW LINE key can be used to skip

from one input field to the next.

v Use visual indicators for particular field types, such as arrows to indicate input

fields, and colons to indicate variable information that is protected. Examples:

FILE NAME ===> (arrow signals an input field)

EMPLOYEE SERIAL: 123456 (colon signals a protected field)

To conform to the CUA guidelines, use leader dots and an ending colon for all

protected fields, use leader dots for all input fields, and use ===> for all

command areas. For example:

EMPLOYEE NUMBER . : 015723

ADDRESS 6510 Main Street

CITY, STATE Imperial, PA

Command ===>

In any case, be consistent. Arrows, colons, and other visual signals are very

confusing if used inconsistently.

v Use highlighting sparingly. Too many intensified fields result in visual

confusion. Do highlight the same type of information on all panels.

v Use DTL to design CUA-based panels. The conversion process can be stopped at

the ISPF panel definition source level if you need to add additional processing.

Example of a CUA panel definition

Figure 36 illustrates many of the panel sections and panel-element attributes that

are available to support CUA panel definitions.

)PANEL KEYLIST(ISPSAB,ISP)

)ATTR FORMAT(MIX)

 ! TYPE(AB)

 @ TYPE(ABSL)

 # TYPE(PT)

 $ TYPE(CH)

 < TYPE(FP)

 ¬ TYPE(NT)

 _ TYPE(NEF) PADC(_)

 ? TYPE(NEF) PADC(_) CAPS(ON)

 | TYPE(LEF) PADC(_)

 % TYPE(LI)

 ~ TYPE(LI) CAPS(ON)

)ABC

 DESC(’Options’)

 PDC DESC(’Create ’)

 PDC DESC(’Change ’)

 PDC DESC(’Delete ’)

 PDC DESC(’Browse ’)

 PDC DESC(’Exit Keylist Utility ’)

Figure 36. CUA panel definition (Part 1 of 3)

110 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ABCINIT

 .ZVARS=ZPDC

 &ZPDC=’ ’

 IF (&COPTIONS=CREATE)

 &ZPDC=1

 IF (&COPTIONS=CHANGE)

 &ZPDC=2

 IF (&COPTIONS=DELETE)

 &ZPDC=3

 IF (&COPTIONS=BROWSE)

 &ZPDC=4

 IF (&COPTIONS=EXIT)

 &ZPDC=5

)ABCPROC

 VER (&ZPDC,LIST,1,2,3,4,5)

 IF (&ZPDC=1)

 &COPTIONS=CREATE

 IF (&ZPDC=2)

 &COPTIONS=CHANGE

 IF (&ZPDC=3)

 &COPTIONS=DELETE

 IF (&ZPDC=4)

 &COPTIONS=BROWSE

 IF (&ZPDC=5)

 &COPTIONS=EXIT

)ABC

 DESC(’Change Keylists’)

 PDC DESC(’Current panel keylist ’)

 PDC DESC(’Current dialog keylist ’)

 PDC DESC(’Specify keylist ’)

)ABCINIT

 .ZVARS=ZPDC

 &ZPDC=’ ’

 IF (&CCHANGE=PANEL)

 &ZPDC=1

 IF (&CCHANGE=DIALOG)

 &ZPDC=2

 IF (&CCHANGE=ANY)

 &ZPDC=3

)ABCPROC

 VER (&ZPDC,LIST,1,2,3)

 IF (&ZPDC=1)

 &CCHANGE=PANEL

 IF (&ZPDC=2)

 &CCHANGE=DIALOG

 IF (&ZPDC=3)

 &CCHANGE=ANY

)BODY WINDOW(62,22) CMD(ZCMD)

 ^! Options! Change Keylists ̂

 @--

 # Keylist Utility for &kluappl

 ^Command ===>_Z

 ̂

 <Enter keylist name?Z ^<OR ̂

 ̂

 ^Select one keylist name from the list below: ̂

 $Select Keylist T -

Figure 36. CUA panel definition (Part 2 of 3)

Chapter 6. Panel definition statement guide 111

This panel definition will display the keylist utility panel, SAMPAN, shown in

Figure 37.

Factors that affect a panel’s size

The total number of lines allowed in a panel definition depends on the storage size

available. Panel definitions can be 80-160 characters wide. However, the width

cannot be greater than that of the physical screen of the terminal used for the

display. The WIDTH keyword in the panel definition determines the width of a

display. If you are defining a panel to be displayed in a pop-up window, use the

WINDOW keyword on the)BODY statement.

)MODEL

 |Z ̂ ~Z ^%Z^%Z

)INIT

 .ZVARS = ’(ZCMD KEYLISTN S KLUKLNFT SOURCET CURKEYL)’

 .HELP = ISP05800

 &ZCMD = ’ ’

 .ATTR(S)=’JUST(LEFT) ’

 .ATTR(KLUKLNFT)=’JUST(LEFT) ’

 .ATTR(SOURCET)=’JUST(LEFT) ’

 .ATTR(CURKEYL)=’JUST(LEFT) ’

 .CURSOR = ’KEYLISTN’

)PROC

 VER (&KEYLISTN NAME)

)HELP

 FIELD(ZABC01) PANEL(ISPKH2)

 FIELD(ZPDC0101) PANEL(ISPKH2A)

 FIELD(ZPDC0102) PANEL(ISPKH2B)

 FIELD(ZPDC0103) PANEL(ISPKH2C)

 FIELD(ZPDC0104) PANEL(ISPKH2D)

 FIELD(ZABC02) PANEL(ISPKH3)

 FIELD(ZPDC0201) PANEL(ISPKH3A)

 FIELD(ZPDC0202) PANEL(ISPKH3B)

 FIELD(ZPDC0203) PANEL(ISPKH3C)

 FIELD(KEYLISTN) PANEL(ISPKH1)

)END ̂

Figure 36. CUA panel definition (Part 3 of 3)

 ┌───────────────── ISPF Settings ──────────────────────────────┐

 -│ Functions Change Keylists │ ----------

 │ -- │

 │ SAMPAN Keylist Utility for ISP Row 1 to 10 of 16│ ore: +

 S│ │

 │ Enter keylist name ________ OR │

 │ │ __

 │ Select one keylist name from the list below: │

 │ Select Keylist T - │

 │ _ ISPHELP P ________________________________ │

 │ _ ISPHLP2 P ________________________________ │

 │ _ ISPKYLST P ________________________________ │

 │ _ ISPNAB P ________________________________ │

 │ _ ISPSAB P *** Currently active keylist *** │

 T│ _ ISPSNAB P ________________________________ │

 │ _ ISPTEST P ________________________________ │

 │ _ ISRHELP P ________________________________ │

 │ _ ISRNAB P ________________________________ │

 │ _ ISRNSAB P ________________________________ │

 │ Command ===> __ │

 C│ F1=Help F2=Split F3=Exit F7=Backward │ __________

 │ F8=Forward F9=Swap F10=Actions F12=Cancel │ =Swap

 F└──┘

Figure 37. Sample CUA panel (SAMPAN on ISPKLUP)

112 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Two shared pool system variables, ZSCRMAXD and ZSCRMAXW, contain physical

terminal screen depth and width. These variables cannot be modified. When using

terminals for which an alternate size is available, these variables reflect the

configuration that produces the largest screen buffer.

For example, in the case of a 3278-5 (or 3290 set up as a 3278-5), the available

screen sizes are 24 x 80 and 27 x 132. Therefore, the values in ZSCRMAXD and

ZSCRMAXW are 27 and 132, respectively. For the 3290, these variables contain the

sizes of the hardware partition in which ISPF is operating.

When running in GUI mode, if the panel exceeds the width or depth of the

physical display, scroll bars are automatically added to allow viewing of the

hidden portion of the screen.

Vertically scrollable panels

You can also define more information than can fit on the panel display by defining

an AREA(SCRL) attribute in the panel attribute section and by defining a panel

)AREA section. You can scroll each area to see and interact with the total content

defined for the area. See “Defining the area section” on page 166 for further

discussion of the)AREA section and scrollable panel areas.

Syntax rules and restrictions for panel definition

For panel definitions:

v All statements, variable names, keywords, and keyword values can be entered in

either uppercase or lowercase. ISPF translates variable names within the panel

body or within panel statements to uppercase before processing them. Values

assigned to dialog variables in the panel body or in the executable sections are

stored as entered, in uppercase or lowercase. When symbolic substitution using

a double ampersand is attempted, the variable will not be updated because ISPF

makes only one pass when scanning for variable replacement.

v The command field cannot be longer than 255 characters. This is the first input

field on the panel, unless otherwise specified by using the CMD keyword on the

)BODY statement. Fields other than the command field can exceed 255

characters.

Fields are ended by the attribute character of a following field or by the end of

the panel body. A panel with a large number of variables can cause the literal

table to exceed 64K bytes. ISPF issues a message when this occurs. To proceed,

the panel containing the variables must be divided into two or more panels.

v All header statements, such as)ATTR and)BODY, must be coded starting in

column 1. Statements following the header need not begin in column 1.

v At least one attribute must be defined within the panel)BODY section. If the

entire)BODY section is defined as an AREA, (DYNAMIC, SCRL, ...), then that

AREA variable must contain at least one attribute. For example, if the panel

)BODY is defined as a char AREA(DYNAMIC), there must be at least one

attribute variable defined within the Dynamic Area variable char.

v If a section is omitted, the corresponding header statement is also omitted. The

)BODY header can be omitted if all previous sections are omitted, and there is

no need to override the default attribute bytes by using a keyword on the

)BODY statement.

v An)END statement is required as the last line of each panel definition. ISPF

ignores any data that appears on lines following the)END statement.

Chapter 6. Panel definition statement guide 113

|

Using blanks and comments

These rules apply to the use of blanks and comment statements:

v In the attribute section, the attribute character and all keywords that follow must

be separated by one or more blanks. At least one keyword must follow the

attribute character on the same line. Keywords can be continued on succeeding

lines.

v In the action bar choice, initialization, reinitialization, processing, and help

sections, several statements can occur on the same line, separated by one or

more blanks. Statements cannot be split between lines, except that listed items

within parentheses and long strings within quotes can be continued on

succeeding lines (see “Formatting items in lists”).

v One or more blanks can occur on either side of operators such as an equal sign

(=), a not-equal operator (¬=), greater-than symbol (>), and not-greater-than

operator (¬>). Embedded blanks cannot occur in double-character operators such

as the not-equal operator.

For example: ¬ = is invalid.

v One or more blanks can occur on either side of parentheses, except that a blank

cannot follow the right parenthesis that begins a header statement. These

statements are all equivalent:

INTENS(LOW)

INTENS (LOW)

INTENS (LOW)

One or more blanks must follow the closing parenthesis to separate it from the

next statement or keyword.

v Comments can be coded in the action bar choice, attribute, initialization,

reinitialization, processing, ccsid, panel, point-and-shoot, list, and help sections.

Comments must be enclosed with the comment delimiters, /* and */. The

comment must be the last item on the line. Additional keywords or statements

that follow the comment on the same line are ignored. A comment cannot be

continued on the next line. For multi-line comments, the comment delimiters

must be used on each line.

v Blank lines can occur anywhere within the action bar choice, attribute,

initialization, reinitialization, processing, and help sections.

Formatting items in lists

These rules apply to items in lists:

v Listed items within parentheses can be separated by commas or one or more

blanks. This rule also applies to paired values within a TRANS statement. For

example, these are equivalent:

TRANS (&XYZ 1,A 2,B 3,C MSG=xxxx)

TRANS (&XYZ 1 A 2 B 3 C MSG=xxxx)

TRANS (&XYZ, 1 , A , 2 , B , 3 , C , MSG=xxxx)

v Null items within a list are treated as blank items. For example, these are

equivalent:

TRANS (&XXX N,‘ ’, Y,YES, *,‘ ’)

TRANS (&XXX N,, Y,YES, *,)

v Listed items within parentheses can be continued on one or more lines. For

example:

TRANS (&CASE 1,‘THIS IS THE VALUE FOR CASE 1’

 2,‘THIS IS THE VALUE FOR CASE 2’)

114 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Literal values within a list can be split between lines by coding a plus sign (+) as

the last character on each line that is to be continued. That is, the plus sign is

used as a continuation character. For example:

TRANS (&CASE 1,‘ THIS IS THE VALUE +

 FOR CASE 1’ 2,‘THIS IS THE +

 VALUE FOR CASE 2’)

Using variables and literal expressions in text fields

These rules apply to literals and variables in text fields:

v A literal is a character string not beginning with an ampersand or period. A

literal value can be enclosed in single quotes (‘’). It must be enclosed in single

quotes if it begins with a single ampersand or a period, or if it contains any of

these special characters:

Blank < (+ |) ; ¬ — , > : =

A literal can contain substitutable variables, consisting of a dialog variable name

preceded by an ampersand (&). The name and ampersand are replaced with the

value of the variable, with trailing blanks stripped, before the statement is

processed. Trailing blanks are stripped from the variable before the replacement

is done. A double ampersand can be used to specify a literal character string

starting with, or containing, an ampersand.

In the DBCS environment, a mixed EBCDIC/DBCS literal can be specified as

follows:

eeee[DBDBDBDB]eeeeee[DBDBDBDBDBDB]

In this example, e represents an EBCDIC character and DB represents a

double-byte character. The brackets [and] represent shift-out and shift-in

characters, in which DBCS subfields must be enclosed. These appear as blanks

when displayed.

If a mixed literal contains two DBCS subfields, and

– The last character of the first subfield is a shift-in that terminates a DBCS

subfield, and

– The first character of the second subfield is a shift-out that begins a DBCS

subfield,

the shift-in and shift-out character pair is eliminated.

v In the panel)BODY or)AREA section, a variable can appear within a text field.

In the action bar choice, initialization, reinitialization, processing, and help

sections, a variable can appear within a literal value. In all three sections, the

variable name and the preceding ampersand are replaced with the value of the

corresponding dialog variable. Trailing blanks are stripped from the variable

before the replacement is done. For example, if variable V has the value ABC

then:

‘F &V G’ yields ‘F ABC G’

‘F,&V,G’ yields ‘F,ABC,G’

v A period (.) at the end of a variable name causes concatenation with the

character string following the variable. For example, if &V has the value ABC,

then:

‘&V.LMN’ yields ‘ABCLMN’

v A single ampersand followed by a blank or by a line-end is interpreted as a

literal ampersand character, not the beginning of a substitutable variable. An

ampersand followed by a nonblank is interpreted as the beginning of a

substitutable variable.

Chapter 6. Panel definition statement guide 115

v A double ampersand can be used to produce a character string starting with, or

containing, an ampersand. The double-character rule also applies to single

quotes within literal values, if the literal is enclosed within delimiting single

quotes, and to a period if it immediately follows a variable name. That is:

 && yields &

 ‘’ yields ’ within delimiting single quotes

 .. yields . immediately following a variable name

Note: To add another layer of quotes, you must double the number of quotes

used in the previous layer. For example:

 ‘one o‘‘ne‘ yields one o‘ne

 ‘two t‘‘‘‘wo‘ yields two t‘‘wo

v When variable substitution occurs within a text field in the panel body, left or

right shifting extends to the end of the field, defined by the occurrence of the

next attribute byte. For left shifting, the right-most character in the field is

replicated (shifted in), provided it is a special (non-alphanumeric) character. For

example:

%DATA SET NAME: &DSNAME ----------------------%

Assuming that the value of variable DSNAME is greater than 7 characters, the

dashes are pushed to the right, up to the next start of field (the next % in this

example). If the value of DSNAME is fewer than 7 characters, additional dashes

are pulled in from the right. Fields defined in a scrollable area end at the end of

the line where their definition starts. They will not wrap to the next line.

Validating DBCS strings

ISPF validates DBCS data as follows:

v All DBCS output values are checked to determine whether they contain valid

16-bit DBCS codes. If an invalid code is found, it is replaced with the

hexadecimal value 4195.

v The lengths of DBCS subfields in FORMAT(MIX) fields, and all FORMAT(DBCS)

fields, are checked for an even number of bytes. If an exception occurs, the data

is displayed in EBCDIC format.

v Split-screen or a floating command line can result in a DBCS field or subfield

being divided. If this occurs in the middle of a DBCS character, the remainder of

the byte is displayed as a blank and is protected.

v If the division of a DBCS subfield results in no divided DBCS characters, but the

shift-in character is separated, the subfield is displayed as a DBCS field and is

protected. However, if a divided DBCS character results, the remainder of the

byte is displayed as a blank and is protected, and the remainder of the subfield

is displayed as a DBCS field and is protected.

v If a DBCS field split results in the division of a DBCS character, the remainder of

the byte is displayed as a blank and is protected.

In all of the previous cases, no message is issued to the user.

Special requirements for defining certain panels

Special requirements exist for defining these types of panels:

v Menus

v Help tutorials. See Chapter 8, “ISPF help and tutorial panels,” on page 297

v Table displays

v Panels containing dynamic areas

v Panels containing a graphic area.

116 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Defining menus

A menu, also called a selection panel (Figure 38), is a special type of panel.

 The sections that can be used in a menu definition are the same as those that can

be used in other panel definitions. However, a menu requires a processing section

in addition to the body section. The processing section must be in a special format.

Menu definitions are processed by the SELECT service. A menu must have an

input field to allow users to enter selection options. Generally, this is the command

field, and is the first input field on the panel. This field should be named ZCMD to

be consistent with the field name used in this guide.

Besides ZCMD, a menu can have input fields to set up dialog variables needed by

that application. Any variables other than ZCMD and ZSEL (or OPT and SEL) that

are set from a menu are automatically stored in the shared variable pool.

Variables from the shared pool, including system variables, can also be displayed

on a menu to provide information to users.

The required processing section must provide for the variable ZCMD to be

truncated at the first period and then translated to a character string. The results

must be stored in a variable named ZSEL.

The processing section of a menu is in this general format:

)PROC

 &ZSEL = TRANS(TRUNC(&ZCMD,‘.’)

 value, ‘string’

 value, ‘string’

 ...
 value, ‘string’

 ‘ ’, ‘ ’

 *, ‘?’)

 ISPF Master Application Menu

 1 Sample 1 Sample application 1 Userid . : LSACKV

 2 . (Description for option 2) Time . . : 11:12

 3 . (Description for option 3) Terminal : 3278

 4 . (Description for option 4) Pf keys : 24

 5 . (Description for option 5) Screen . : 1

 X Exit Terminate ISPF using list/log defaults Language : ENGLISH

 Appl ID : ISP

 Release : ISPF 5.6

 Enter END command to terminate application

 5694-A01 (C) COPYRIGHT IBM CORP 1982, 2003

┌──┐

│ Licensed Materials - Property of IBM │

│ 5637-A01 (C) Copyright IBM Corp. 1980, 2004. │

│ All rights reserved. │

│ US Government Users Restricted Rights - │

│ Use, duplication or disclosure restricted │

│ by GSA ADP Schedule Contract with IBM Corp. │

└──┘

 Option ===>

 F1=Help F2=Split F3=Exit F9=Swap F10=Actions F12=Cancel

Figure 38. Example of a menu (ISP@MSTR)

Chapter 6. Panel definition statement guide 117

The maximum length for ZSEL is 80 characters. If ZSEL is assigned a string longer

than 80 characters, the string is truncated.

The ZCMD variable is truncated before translation to allow users to bypass one or

more intermediate menus. For example, 1.2 means primary option 1, suboption 2.

This is generally called a nested option. ZCMD is automatically stored, untranslated,

as entered. When the SELECT service discovers that variable ZCMD contains a

period, it causes the next lower-level menu to be selected with an initial option of

everything following the first period. As long as the initial option is nonblank, the

lower-level menu is processed in the normal fashion but is not displayed to the

user.

Each value is one of the options that can be entered on the menu. Each string

contains selection keywords indicating the action to occur. The selection keywords

are:

‘PANEL(pnl-name) [NEWAPPL [(appl-id)]

 [PASSLIB]]|[NEWPOOL] [ADDPOP] [SUSPEND] [SCRNAME]’

‘CMD(command) [NEWAPPL [(appl-id)] [PASSLIB]]|[NEWPOOL] [SUSPEND]

 [NOCHECK] [LANG(APL|CREX)]

 [MODE(LINE|FSCR)]

 [BARRIER]

 [NEST]

 [SCRNAME]’

‘PGM(prog-name) [PARM(parameters)]

 [NEWAPPL [(appl-id)] [PASSLIB]]|[NEWPOOL] [SUSPEND]

 [NOCHECK]

 [MODE(LINE|FSCR)]

 [SCRNAME]’

‘WSCMD(workstation-command)

 [MODAL|MODELESS]

 [WSDIR(DIR)]

 [MAX|MIN]

 [VIS|INVIS]’

‘WSCMDV(var_name)

 [MODAL|MODELESS]

 [WSDIR(DIR)]

 [MAX|MIN]

 [VIS|INVIS]’

 EXIT

Except for EXIT, each string of keywords must be enclosed in single quotes

because it contains parentheses, and sometimes blanks.

These selection keywords are the same as those that can be specified for the

SELECT service:

PANEL(panel-name)

CMD(command) [LANG(APL|CREX)] [MODE(LINE|FSCR)] [BARRIER] [NEST]

PGM(program-name) [MODE(LINE|FSCR)] PARM(parameters)

[NEWAPPL[(application-id)] [PASSLIB]]|[NEWPOOL] [SUSPEND] [SCRNAME(screen_name)]

WSCMD(workstation-command) [MODAL|MODELESS] [WSDIR(DIR)] [MAX|MIN] [VIS|INVIS]

WSCMDV(var_name) [MODAL|MODELESS] [WSDIR(DIR)] [MAX|MIN] [VIS|INVIS]

The PANEL keyword, for example, is used to specify the name of a lower-level

menu to be displayed. The CMD and PGM keywords are used to invoke a dialog

118 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

function coded in a command procedure or programming language, respectively.

NOCHECK, MODE, and EXIT are described following.

NOCHECK keyword

Normally, nested options are allowed only when each component of the option (up

to, but not including the last component) specifies a lower-level menu. For

example, given these ZSEL keywords on a selection panel definition:

&ZSEL = TRANS (TRUNC(&ZCMD,‘.’)

 1, ‘PANEL(DEF)’

 .

 .

 8, ‘PGM(ABC)’

 9, ‘PGM(XYZ)’

A user can enter 1.x as a selection. This selection would be accepted by ISPF.

However, if the developer wants to allow a user to enter a nested option that

selects a dialog function, in this case 8.x or 9.x, the developer specifies the

NOCHECK keyword as in this example:

&ZSEL = TRANS (TRUNC(&ZCMD,‘.’)

 1, ‘PANEL(DEF)’

 .

 .

 8, ‘PGM(ABC) NOCHECK’

 9, ‘PGM(XYZ) NOCHECK’

The NOCHECK keyword specifies that normal checking for validity is suspended.

It is the responsibility of the dialog function to interpret the meaning of the

lower-level options. To allow this, the remaining options, those to the right of the

first period, are usually passed to the dialog function through any appropriate

variable that has been set equal to the .TRAIL panel control variable in the menu

definition.

Example:

&ZSEL = TRANS (TRUNC (&ZCMD, ‘.’)

 1, ‘PANEL(DEF)’

 8, ‘PGM(ABC) NOCHECK’

 9, ‘PGM(XYZ) NOCHECK’

&NEXTOPT = .TRAIL

In this example, variable NEXTOPT contains the remainder of the TRUNC

operation. If the user enters 8.5.2, program ABC is invoked and NEXTOPT is set

to 5.2. If the user enters 9.7, program XYZ is invoked and NEXTOPT is set to 7.

Since variable NEXTOPT is unknown to the SELECT service, it is automatically

stored in the shared variable pool, where it can be accessed by the dialog function.

When the NOCHECK keyword is specified, a return code of 20 from the dialog

function indicates that the remaining options are invalid. If return code 20 is

passed back from the function, ISPF displays an invalid option.

MODE keyword

You can use the MODE keyword, with either the LINE or the FSCR option, on a

SELECT service request to control whether ISPF enters line mode or full-screen

mode when a TSO command or dialog program is invoked. This eliminates the

need to control line mode by prefixing TSO commands with a percent sign.

Chapter 6. Panel definition statement guide 119

EXIT keyword

The EXIT keyword, if used, applies only to a primary option menu. It terminates

ISPF, using defaults for list/log data set processing. EXIT need not be enclosed in

single quotes.

Blank or invalid options (‘’ or *,‘?’)

If you use a blank ‘ ’ for the value (ZCMD variable is blank), use a blank as the

string. This causes the SELECT service to redisplay the menu. For primary option

menus, the menu is redisplayed without a message. For lower-level menus, an

enter option message is displayed if the option field was left blank.

If you use an asterisk (*) for the value, indicating an invalid option was entered,

use a question mark (?) as the string. This causes the SELECT service to redisplay

the menu with an invalid option message.

Defining primary option menus

A primary option menu is a selection panel that has special significance in terms

of the way the RETURN command operates, and in terms of the way a jump

function, an option number preceded by an equal sign, works. One type of primary

option menu is the master application menu.

The first menu displayed when ISPF is invoked is usually treated as a primary

option menu. For example, if ISPF is invoked with:

ISPSTART PANEL(XYZTOP)

panel XYZTOP is treated as a primary option menu.

Similarly, if ISPF is invoked with:

ISPSTART CMD(XYZ) or

ISPSTART PGM(XYZ)

and dialog XYZ subsequently issues:

SELECT PANEL(XYZTOP)

panel XYZTOP is treated as a primary option menu because it is the first invoked

menu.

It is possible to write a dialog with no primary option menu by setting the variable

ZPRIM to NO on the first selection panel, panel XYZTOP in this example:

)INIT

 &ZPRIM = NO

In general, this approach is not recommended because the RETURN command

then causes an immediate exit from the dialog, which can be confusing to the user.

A dialog can have lower-level (nested) primary option menus. This technique is

implemented by setting variable ZPRIM to YES on a lower-level selection panel:

)INIT

 &ZPRIM = YES

Nested primary option menus should be used sparingly, since they can confuse the

user. It is recommended that there be only one primary option menu per major

application.

120 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Specifying the next menu to display

ISPF allows the display of menus that are arranged in a hierarchy. The path

through the hierarchy is automatically preserved as the user selects options from

the various menus. As the user moves back up through the hierarchy, the menus

are redisplayed in reverse sequence from which they were selected. While this is

the standard mode of operation, it can be overridden. A developer can specify an

alternative mode of menu processing called explicit chain mode. In this mode, the

parent menu is specified explicitly in a system variable named ZPARENT. This

variable can be set in a panel definition or in a dialog function:

v From a menu, ZPARENT specifies the name of the next menu to be displayed

when the user enters the END command. A menu that specifies itself as the

parent is interpreted as a primary option menu. The RETURN command stops at

that menu.

v From a function, ZPARENT specifies the name of the next menu to be displayed

when the function completes execution. If a function is invoked from another

function by the SELECT service, the lower-level function can set ZPARENT.

Upon completion of the lower-level function, the higher-level function resumes

execution. The setting of ZPARENT does not take effect until the higher-level

function, the one originally invoked from a menu, completes execution.

Notes:

1. A value can be stored in ZPARENT in a function, or it can be stored in the

)INIT,)REINIT,)PROC, or)BODY section of a panel.

2. The value in ZPARENT takes effect only after display of a selection panel when

the user enters the END command.

3. When the ZPARENT variable is set from a dialog function, it must be explicitly

copied to the shared pool, using VPUT, to ensure that ISPF still has access to it

after the function completes.

4. Once the ZPARENT variable is set:

v The hierarchy of menus traversed by the user is not preserved by ISPF.

v The NEWAPPL and NEWPOOL selection keywords are inoperable (ignored)

while the dialog is in explicit chain mode.
5. The ZPARENT variable is automatically reset to blank by ISPF each time it is

used. If the dialog does not continue to set ZPARENT, ISPF resumes normal

mode. The hierarchy of menus, if any, up to the point at which explicit chain

mode was started is then restored.

6. Generally, a dialog should use either explicit chain mode or hierarchical

chaining, the standard mode. Chaining should not be mixed. If they are mixed,

a function that sets ZPARENT should do so only after completion of any

hierarchical dialog that it invokes. For example, the setting of ZPARENT should

be the last thing the function does before returning control. Otherwise, results

are unpredictable.

7. The ZPRIM variable is not applicable and is ignored when operating in explicit

chain mode.

Example of a master application menu

A master application menu, named ISP@MSTR (See Figure 38 on page 117), is

distributed with ISPF as part of the panel library. This menu can be used, if

desired, to allow selection of the various applications available at an installation.

If used, the master menu should be the first menu displayed when the user logs

on. It can be displayed automatically by including this command in the user’s TSO

LOGON procedure:

Chapter 6. Panel definition statement guide 121

ISPSTART [PANEL(ISP@MSTR)]

When no keywords are specified on the ISPSTART command, PANEL (ISP@MSTR)

is assumed.

The master application menu is generated from a DTL source file (Figure 40 on

page 123). The menu selections are enabled for point-and-shoot selection.

The master application menu)INIT,)PROC, and)PNTS sections are included in

Figure 39 to illustrate some of the special menu statement formats already

discussed.

 Figure 40 on page 123 shows the DTL source for panel ISP@MSTR. All of the

translatable text is defined with ENTITY tags and is placed at the beginning of the

file. Special comments bordered by a DTL comment line:

 <!-- ## -->

identify the places where the source file can be modified and provide an

explanation for including additional options.

)INIT

.ZVARS = ’(ZCMD ZUSER ZTIME ZTERM ZKEYS ZSCREEN ZLANG ZAPPLID ZENVIR)’

.HELP = ISP00005

&ZPRIM = YES /* This is a primary option menu */

IF (&ZLOGO = ’YES’) /* CT@MJC*/

 IF (&ZSPLIT = ’NO’) /* Not in split screen @L5A*/

 IF (&ZCMD = &Z) /* No command pending @L5A*/

 IF (&ZLOGOPAN ¬= ’DONE’) /* No logo displayed yet @L5A*/

 .MSG = ISPLO999 /* Set logo information @L5A*/

 .RESP = ENTER /* Simulate enter @L5A*/

 &ZLOGOPAN = ’DONE’ /* @L5A*/

 &ZCLEAN = ’NO’ /* @L5A*/

 IF (&ZCMD ¬= &Z) /* Command pending @L5A*/

 &ZLOGOPAN = ’DONE’ /* @L5A*/

 VPUT (ZLOGOPAN) SHARED /* @L5A*/

 IF (&ZSPLIT = ’YES’) /* In split screen @V5A*/

 &ZLOGOPAN = ’DONE’

)PROC

/* This in a GML based panel generated by ISPDTLC. */

/* */

/* Make changes by updating the GML source file */

/* and reconverting ISP@MSTR. */

&ZCMDWRK = TRUNC(&ZCMD,’.’)

&ZTRAIL=.TRAIL

&ZSEL = TRANS (TRUNC (&ZCMD,’.’)

 1,’PANEL(ISP@PRIM) SCRNAME(PRIM)’

 X,EXIT

 ’ ’,’ ’

 *,’?’)

)PNTS

FIELD(ZPS01001) VAR(ZCMD) VAL(1)

FIELD(ZPS01002) VAR(ZCMD) VAL(2)

FIELD(ZPS01003) VAR(ZCMD) VAL(3)

FIELD(ZPS01004) VAR(ZCMD) VAL(4)

FIELD(ZPS01005) VAR(ZCMD) VAL(5)

FIELD(ZPS01006) VAR(ZCMD) VAL(X)

FIELD(ZPS00001) VAR(ZCMD) VAL(END)

)END

/* 5655-042 (C) COPYRIGHT IBM CORP 1982, 2003 */

Figure 39. Master application menu definition

122 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

<:-- ISR@MSTR selection menu -->

<:doctype dm system(

 <:ENTITY ispzmstr system -- common logic file imbed -->

<:-- Start of translatable panel text section -->

<:-- text delimited by " is to be translated -->

<:-- text should end with ’">’ as shown. -->

<:-- the ’">’ can be moved to the right for text expansion -->

 <:-- panel title text follows - maximum length = 74 bytes -->

 <:ENTITY panel_title

 "ISPF Master Application Menu">

 <:-- choice selection text entries follow -->

 <:-- choice text for this panel consists of 2 parts: -->

 <:-- part 1 - point and shoot - primary description -->

 <:-- part 2 - additional descriptive text -->

 <:-- if combined length of text for part 1 plus part 2 exceeds -->

 <:-- 54 bytes, the part 2 text will be folded into multiple lines -->

 <:-- part 1 - point and shoot - primary description follows -->

 <:-- pad short text with blanks, aligning the ending quote mark -->

 <:-- all text strings must be the same length, including blanks -->

 <:-- ## -->

 <:-- To add options 2, 3, 4, or 5 to this panel: -->

 <:-- - Replace the text below for "choice_n_pnts" -->

 <:-- (where "n" is the option number) -->

 <:-- with the point-and-shoot key identifying option text. -->

 <:-- -->

 <:-- To add new options to this panel: -->

 <:-- - repeat the text below for "choice_n_pnts" -->

 <:-- (where "n" is the option number) -->

 <:-- for the new option number and add it to the list -->

 <:-- with the point-and-shoot key identifying option text. -->

 <:-- for example: -->

 <:-- <:ENTITY choice_6_pnts "New option 6"> -->

 <:-- ## -->

 <:ENTITY choice_1_pnts "Sample 1 ">

 <:ENTITY choice_2_pnts ". ">

 <:ENTITY choice_3_pnts ". ">

 <:ENTITY choice_4_pnts ". ">

 <:ENTITY choice_5_pnts ". ">

 <:ENTITY choice_X_pnts "Exit ">

Figure 40. Master application menu DTL source (Part 1 of 4)

Chapter 6. Panel definition statement guide 123

<:-- part 2 - additional descriptive text -->

 <:-- ## -->

 <:-- To add options 2, 3, 4, or 5 to this panel: -->

 <:-- - Replace the text below for "choice_n_text" -->

 <:-- (where "n" is the option number) -->

 <:-- with the additional option description text. -->

 <:-- -->

 <:-- To add new options to this panel: -->

 <:-- - repeat the text below for "choice_n_text" -->

 <:-- (where "n" is the option number) -->

 <:-- for the new option number and add it to the list -->

 <:-- with the additional option description text. -->

 <:-- for example: -->

 <:-- <:ENTITY choice_6_text "(Description for option 6) ">-->

 <:-- ## -->

 <:ENTITY choice_1_text

 "Sample application 1 ">

 <:ENTITY choice_2_text

 "(Description for option 2) ">

 <:ENTITY choice_3_text

 "(Description for option 3) ">

 <:ENTITY choice_4_text

 "(Description for option 4) ">

 <:ENTITY choice_5_text

 "(Description for option 5) ">

 <:ENTITY choice_X_text

 "Terminate ISPF using list/log defaults">

 <:-- Status area labels - maximum text length = 10 bytes -->

 <:ENTITY status_userid "Userid . :">

 <:ENTITY status_time "Time . . :">

 <:ENTITY status_term "Terminal :">

 <:ENTITY status_pfkeys "Pf keys :">

 <:ENTITY status_scrnum "Screen . :">

 <:ENTITY status_lang "Language :">

 <:ENTITY status_appl "Appl ID :">

 <:ENTITY status_rel "Release :">

 <:-- Generated panel comments - maximum text length = 66 bytes -->

 <:ENTITY panel_cmnt1

 "This in a GML based panel generated by ISPDTLC.">

 <:ENTITY panel_cmnt2

 " ">

 <:ENTITY panel_cmnt3

 "Make changes by updating the GML source file ">

 <:ENTITY panel_cmnt4

 "and reconverting ISP@MSTR. ">

 <:-- panel instruction text line - maximum text length = 78 bytes -->

 <:-- panel instruction entities will be concatenated -->

 <:ENTITY panel_instruct_1

 "Enter <ps var=zcmd value=END csrgrp=99>END</ps> ">

 <:ENTITY panel_instruct_2

 "command to terminate application">

<:-- End of translatable panel text section -->

)> <:-- DO NOT DELETE THIS LINE -->

Figure 40. Master application menu DTL source (Part 2 of 4)

124 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

<varclass name=vcc type=’char 80’>

<xlatl format=upper>

</xlatl>

<varclass name=vco type=’char 7’>

<varlist>

 <vardcl name=zcmd varclass=vcc>

 <vardcl name=zuser varclass=vco>

 <vardcl name=ztime varclass=vco>

</varlist>

<copyr>5694-A01 (C) COPYRIGHT IBM CORP 1982, 2004

<panel name=isp@mstr help=isp00005 padc=user keylist=isrnsab applid=isr

 width=80 depth=24 menu prime window=no>&panel_title;

<cmdarea noinit>

<area depth=8 extend=force width=59 dir=horiz>

 <:-- selection options follow - left side of panel -->

 <selfld type=menu selwidth=* trail=ztrail fchoice=1 entwidth=1

 tsize=12 selcheck=yes>

 <choice> <ps var=zcmd value=1 csrgrp=99>

 &choice_1_pnts;</ps>

 &choice_1_text;

 <action run=isp@prim type=panel scrname=prim>

 <:-- ## -->

 <:-- To add options 2, 3, 4, or 5 to this panel: -->

 <:-- add a <ACTION> tag provide the selection -->

 <:-- information for the generated ZSEL statement. -->

 <:-- -->

 <:-- <action run=newoptn2 type=panel scrname=opt2> -->

 <:-- where: -->

 <:-- run=newoptn2 - provides the name of the panel, -->

 <:-- pgm, cmd, wscmd, wscmdv -->

 <:-- type=panel - provides the selection choice: -->

 <:-- panel, pgm, cmd, wscmd, wscmdv -->

 <:-- scrname=opt2 - provides an optional screen name -->

 <:-- ## -->

 <choice> <ps var=zcmd value=2 csrgrp=99>

 &choice_2_pnts;</ps>

 &choice_2_text;

 <choice> <ps var=zcmd value=3 csrgrp=99>

 &choice_3_pnts;</ps>

 &choice_3_text;

 <choice> <ps var=zcmd value=4 csrgrp=99>

 &choice_4_pnts;</ps>

 &choice_4_text;

 <choice> <ps var=zcmd value=5 csrgrp=99>

 &choice_5_pnts;</ps>

 &choice_5_text;

Figure 40. Master application menu DTL source (Part 3 of 4)

Chapter 6. Panel definition statement guide 125

To add a new application to the master menu, copy the ISP@MSTR DTL source file

from the GML library to a private data set. Locate the sections of code within the

DTL comment lines:

 <!-- ## -->

and modify the DTL source code to:

 <:-- ## -->

 <:-- To add new options to this panel: -->

 <:-- - add a new <choice> tag to this list following the -->

 <:-- pattern of the <choice> tags above. -->

 <:-- a new <ACTION> tag is required to provide the selection -->

 <:-- information for the generated ZSEL statement. -->

 <:-- -->

 <:-- <choice> <ps var=zcmd value=6 csrgrp=99> -->

 <:-- &choice_6_pnts;</ps> -->

 <:-- &choice_6_text; -->

 <:-- <action run=newoptn6 type=panel scrname=opt6> -->

 <:-- where: -->

 <:-- run=newoptn6 - provides the name of the panel, -->

 <:-- pgm, cmd, wscmd, wscmdv -->

 <:-- type=panel - provides the selection choice: -->

 <:-- panel, pgm, cmd, wscmd, wscmdv -->

 <:-- scrname=opt6 - provides an optional screen name -->

 <:-- ## -->

 <choice selchar=X> <ps var=zcmd value=X csrgrp=99>

 &choice_X_pnts;</ps>

 &choice_X_text;

 <action run=exit type=exit>

 <comment type=proc>&panel_cmnt1;

 <comment type=proc>&panel_cmnt2;

 <comment type=proc>&panel_cmnt3;

 <comment type=proc>&panel_cmnt4;

 </selfld>

</area>

 <:-- right side of option menu panel follows, status area -->

<area dir=horiz>

 <region dir = vert>

 <divider>

 <dtacol pmtwidth=10 entwidth=8>

 <dtafld datavar=ZUSER usage=out> &status_userid;

 <dtafld datavar=ZTIME usage=out> &status_time;

 <dtafld datavar=ZTERM usage=out> &status_term;

 <dtafld datavar=ZKEYS usage=out> &status_pfkeys;

 <dtafld datavar=ZSCREEN usage=out>&status_scrnum;

 <dtafld datavar=ZLANG usage=out> &status_lang;

 <dtafld datavar=ZAPPLID usage=out>&status_appl;

 <dtafld datavar=ZENVIR usage=out> &status_rel;

 </dtacol>

 </region

<:-- panel logic file imbed -->

 &ispzmstr;

</area>

<region>

 <info width=78>

 <lines>

&panel_instruct_1;&panel_instruct_2;

 </lines>

 <p>5694-A01 (C) COPYRIGHT IBM CORP 1982, 2003

 </info>

</region>

</panel>

Figure 40. Master application menu DTL source (Part 4 of 4)

126 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

1. Define the point-and-shoot option text

2. Define the option description text

3. Add an <ACTION> tag for each additional option.

See the z/OS ISPF Dialog Tag Language Guide and Reference for a description of

Dialog Tag Language syntax and information about compiling DTL panels.

Compile the modified DTL source file using the ISPDTLC command, and review

the generated panel to confirm that your changes have been processed.

Example of a primary option menu

Figure 42 on page 129 shows a primary option menu panel DTL source file

definition. This is the sample primary option menu ISP@PRIM, distributed with

ISPF. &ZPRIM=YES specifies that this panel is a primary option menu.

The primary option menu)INIT,)PROC, and)PNTS sections are included in

Figure 41 on page 128 to illustrate some of the special menu statement formats

already discussed.

The initialization section sets the control variable .HELP to the name of a tutorial

page to be displayed if a user enters the HELP command from this menu. It also

initializes two system variables that specify the tutorial table of contents and first

index page.

The processing section specifies the action to be taken for each option entered by

the user. If option 0 is selected, program ISPISM is invoked. If option 1 is selected,

panel ISPUCMA is displayed; and so on.

For the tutorial, program ISPTUTOR is invoked and passed a parameter, ISP00000,

which ISPTUTOR interprets as the name of the first panel to be displayed. Panel

ISP00000 is the first panel in the tutorial for ISPF. Other applications should pass

the name of the first tutorial page for that application.

Chapter 6. Panel definition statement guide 127

Figure 42 on page 129 shows the DTL source for panel ISP@PRIM. All of the

translatable text is defined with ENTITY tags and is placed at the beginning of the

file. Special comments bordered by a DTL comment line:

 <!-- ## -->

identify the places where the source file can be modified and provide an

explanation for including additional options.

)INIT

.ZVARS = ’(ZCMD ZUSER ZTIME ZTERM ZKEYS ZSCREEN ZLANG ZAPPLID ZENVIR)’

.HELP = ISP00003

&ZPRIM = YES

&ZHTOP = ISP00003 /* Tutorial table of contents for this appl*/

&ZHINDEX = ISP91000 /* Tutorial index - 1st page for this appl */

VPUT (ZHTOP,ZHINDEX) PROFILE

)PROC

/* This in a GML based panel generated by ISPDTLC. */

/* */

/* Make changes by updating the GML source file */

/* and reconverting ISP@PRIM. */

&ZSEL = TRANS (TRUNC (&ZCMD,’.’)

 0,’PGM(ISPISM) SCRNAME(SETTINGS)’

 1,’PANEL(ISPUCMA) SCRNAME(CMDS)’

 2,’PGM(ISPPREP) NEWAPPL SCRNAME(PREP)’

 3,’CMD(ISPDTLC) SCRNAME(DTLC)’

 7,’PGM(ISPYXDR) PARM(&ZTAPPLID) SCRNAME(DTEST) NOCHECK’

 T,’PGM(ISPTUTOR) PARM(ISP00000) SCRNAME(TUTOR)’

 X,EXIT

 ’ ’,’ ’

 *,’?’)

&ZTRAIL=TRAIL

)PNTS

FIELD(ZPS01001) VAR(ZCMD) VAL(0)

FIELD(ZPS01002) VAR(ZCMD) VAL(1)

FIELD(ZPS01003) VAR(ZCMD) VAL(2)

FIELD(ZPS01004) VAR(ZCMD) VAL(3)

FIELD(ZPS01005) VAR(ZCMD) VAL(4)

FIELD(ZPS01006) VAR(ZCMD) VAL(5)

FIELD(ZPS01007) VAR(ZCMD) VAL(7)

FIELD(ZPS01008) VAR(ZCMD) VAL(T)

FIELD(ZPS01009) VAR(ZCMD) VAL(X)

FIELD(ZPS00001) VAR(ZCMD) VAL(END)

)END

Figure 41. ISPF primary option menu definition

128 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

<!’-- ISR@PRIM selection menu -->

<!’doctype dm system(

 <!’ENTITY ispzprim system -- common logic file embed -->

<!’-- Start of translatable panel text section -->

<!’-- text delimited by " is to be translated -->

<!’-- text should end with ’">’ as shown. -->

<!’-- the ’">’ can be moved to the right for text expansion -->

 <!’-- panel title text follows - maximum length = 74 bytes -->

 <!’ENTITY panel_title

 "Sample Primary Option Menu">

 <!’-- choice selection text entries follow -->

 <!’-- choice text for this panel consists of 2 parts: -->

 <!’-- part 1 - point and shoot - primary description -->

 <!’-- part 2 - additional descriptive text -->

 <!’-- if combined length of text for part 1 plus part 2 exceeds -->

 <!’-- 54 bytes, the part 2 text will be folded into multiple lines -->

 <!’-- part 1 - point and shoot - primary description follows -->

 <!’-- pad short text with blanks, aligning the ending quote mark -->

 <!’-- all text strings must be the same length, including blanks -->

 <!’-- ## -->

 <!’-- To add options 4, or 5 to this panel: -->

 <!’-- - Replace the text below for "choice_n_pnts" -->

 <!’-- (where "n" is the option number) -->

 <!’-- with the point-and-shoot key identifying option text. -->

 <!’-- -->

 <!’-- To add new options to this panel: -->

 <!’-- - repeat the text below for "choice_n_pnts" -->

 <!’-- (where "n" is the option number) -->

 <!’-- for the new option number and add it to the list -->

 <!’-- with the point-and-shoot key identifying option text. -->

 <!’-- for example: -->

 <!’-- <!’ENTITY choice_8_pnts "New option 8"> -->

 <!’-- ## -->

 <!’ENTITY choice_0_pnts "Settings ">

 <!’ENTITY choice_1_pnts "Commands ">

 <!’ENTITY choice_2_pnts "ISPPREP ">

 <!’ENTITY choice_3_pnts "ISPDTLC ">

 <!’ENTITY choice_4_pnts ". ">

 <!’ENTITY choice_5_pnts ". ">

 <!’ENTITY choice_6_pnts ". ">

 <!’ENTITY choice_7_pnts "Dialog Test">

 <!’ENTITY choice_T_pnts "Tutorial ">

 <!’ENTITY choice_X_pnts "Exit ">

Figure 42. ISPF primary option menu DTL source (Part 1 of 4)

Chapter 6. Panel definition statement guide 129

<!’-- part 2 - additional descriptive text -->

 <!’-- ## -->

 <!’-- To add options 4, or 5 to this panel: -->

 <!’-- - Replace the text below for "choice_n_text" -->

 <!’-- (where "n" is the option number) -->

 <!’-- with the additional option description text. -->

 <!’-- -->

 <!’-- To add new options to this panel: -->

 <!’-- - repeat the text below for "choice_n_text" -->

 <!’-- (where "n" is the option number) -->

 <!’-- for the new option number and add it to the list -->

 <!’-- with the additional option description text. -->

 <!’-- for example: -->

 <!’-- <!’ENTITY choice_8_text "(Description for option 8) ">-->

 <!’-- ## -->

 <!’ENTITY choice_0_text

 "Terminal and user parameters">

 <!’ENTITY choice_1_text

 "Create/change command table ">

 <!’ENTITY choice_2_text

 "Preprocessed panel utility ">

 <!’ENTITY choice_3_text

 "ISPF DTL Conversion Utility ">

 <!’ENTITY choice_4_text

 "(Description for option 4) ">

 <!’ENTITY choice_5_text

 "(Description for option 5) ">

 <!’ENTITY choice_6_text

 "(Description for option 6) ">

 <!’ENTITY choice_7_text

 "Perform dialog testing">

 <!’ENTITY choice_T_text

 "Display information about this application">

 <!’ENTITY choice_X_text

 "Terminate ISPF using list/log defaults">

 <!’-- Status area labels - maximum text length = 10 bytes -->

 <!’ENTITY status_userid "Userid . :">

 <!’ENTITY status_time "Time . . :">

 <!’ENTITY status_term "Terminal :">

 <!’ENTITY status_pfkeys "Pf keys :">

 <!’ENTITY status_scrnum "Screen . :">

 <!’ENTITY status_lang "Language :">

 <!’ENTITY status_appl "Appl ID :">

 <!’ENTITY status_rel "Release :">

 <!’-- Generated panel comments - maximum text length = 66 bytes -->

 <!’ENTITY panel_cmnt1

 "This in a GML based panel generated by ISPDTLC.">

 <!’ENTITY panel_cmnt2

 " ">

 <!’ENTITY panel_cmnt3

 "Make changes by updating the GML source file ">

 <!’ENTITY panel_cmnt4

 "and reconverting ISP@PRIM. ">

 <!’-- panel instruction text line - maximum text length = 78 bytes -->

 <!’-- panel instruction entities will be concatenated -->

 <!’ENTITY panel_instruct_1

 "Enter <ps var=zcmd value=END csrgrp=99>END</ps> ">

 <!’ENTITY panel_instruct_2

 "command to terminate application">

<!’-- End of translatable panel text section -->

)> <!’-- DO NOT DELETE THIS LINE -->

Figure 42. ISPF primary option menu DTL source (Part 2 of 4)

130 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

<varclass name=vcc type=’char 80’>

<xlatl format=upper>

</xlatl>

<varclass name=vco type=’char 7’>

<varlist>

 <vardcl name=zcmd varclass=vcc>

 <vardcl name=zuser varclass=vco>

 <vardcl name=ztime varclass=vco>

</varlist>

<copyr>5655-042 (C) COPYRIGHT IBM CORP 1982, 1996

<panel name=isp@prim help=isp00003 padc=user keylist=isrnsab applid=isr

 width=80 depth=24 menu prime window=no>&panel_title;

<cmdarea noinit>

<area depth=11 extend=force width=59 dir=horiz>

 <!’-- selection options follow - left side of panel -->

 <selfld type=menu selwidth=* trail=ztrail fchoice=0 entwidth=1

 tsize=12>

 <choice> <ps var=zcmd value=0 csrgrp=99>

 &choice_0_pnts;</ps>

 &choice_0_text;

 <action run=ispism type=pgm scrname=settings>

 <choice> <ps var=zcmd value=1 csrgrp=99>

 &choice_1_pnts;</ps>

 &choice_1_text;

 <action run=ispucma type=panel scrname=cmds>

 <choice> <ps var=zcmd value=2 csrgrp=99>

 &choice_2_pnts;</ps>

 &choice_2_text;

 <action run=ispprep type=pgm newappl scrname=prep>

 <choice> <ps var=zcmd value=3 csrgrp=99>

 &choice_3_pnts;</ps>

 &choice_3_text;

 <action run=ispdtlc type=cmd scrname=dtlc>

 <!’-- ## -->

 <!’-- To add options 4, or 5 to this panel: -->

 <!’-- add a <ACTION> tag provide the selection -->

 <!’-- information for the generated ZSEL statement. -->

 <!’-- -->

 <!’-- <action run=newoptn4 type=panel scrname=opt4> -->

 <!’-- where:run= -->

 <!’-- run=newoptn4 - provides the name of the panel, -->

 <!’-- pgm, cmd, wscmd, wscmdv -->

 <!’-- type=panel - provides the selection choice: -->

 <!’-- panel, pgm, cmd, wscmd, wscmdv -->

 <!’-- scrname=opt4 - provides an optional screen name -->

 <!’-- ## -->

 <choice> <ps var=zcmd value=4 csrgrp=99>

 &choice_4_pnts;</ps>

 &choice_4_text;

 <choice> <ps var=zcmd value=5 csrgrp=99>

 &choice_5_pnts;</ps>

 &choice_5_text;

 <choice hide> <ps var=zcmd value=6 csrgrp=99>

 &choice_6_pnts;</ps>

 &choice_6_text;

 <choice> <ps var=zcmd value=7 csrgrp=99>

 &choice_7_pnts;</ps>

 &choice_7_text;

 <action run=ispyxdr type=pgm parm=&ZTAPPLID nocheck scrname=dtest>

Figure 42. ISPF primary option menu DTL source (Part 3 of 4)

Chapter 6. Panel definition statement guide 131

To add a new application to the primary option menu, copy the ISP@PRIM DTL

source file from the GML library to a private data set. Locate the sections of code

within the DTL comment lines:

 <!-- ## -->

 <!’-- ## -->

 <!’-- To add new options to this panel: -->

 <!’-- - add a new <choice> tag to this list following the -->

 <!’-- pattern of the <choice> tags above. -->

 <!’-- a new <ACTION> tag is required to provide the selection -->

 <!’-- information for the generated ZSEL statement. -->

 <!’-- -->

 <!’-- <choice> <ps var=zcmd value=8 csrgrp=99> -->

 <!’-- &choice_8_pnts;</ps> -->

 <!’-- &choice_8_text; -->

 <!’-- <action run=newoptn8 type=panel scrname=opt8> -->

 <!’-- where:run= -->

 <!’-- run=newoptn8 - provides the name of the panel, -->

 <!’-- pgm, cmd, wscmd, wscmdv -->

 <!’-- type=panel - provides the selection choice: -->

 <!’-- panel, pgm, cmd, wscmd, wscmdv -->

 <!’-- scrname=opt8 - provides an optional screen name -->

 <!’-- ## -->

 <choice selchar=T> <ps var=zcmd value=T csrgrp=99>

 &choice_T_pnts;</ps>

 &choice_T_text;

 <action run=isptutor type=pgm parm=ISP00000 scrname=tutor>

 <choice selchar=X> <ps var=zcmd value=X csrgrp=99>

 &choice_X_pnts;</ps>

 &choice_X_text;

 <action run=exit type=exit>

 <comment type=proc>&panel_cmnt1;

 <comment type=proc>&panel_cmnt2;

 <comment type=proc>&panel_cmnt3;

 <comment type=proc>&panel_cmnt4;

 </selfld>

</area>

<!’-- right side of option menu panel follows, status area -->

<area dir=horiz>

 <region dir = vert>

 <divider>

 <dtacol pmtwidth=10 entwidth=8>

 <dtafld datavar=ZUSER usage=out> &status_userid;

 <dtafld datavar=ZTIME usage=out> &status_time;

 <dtafld datavar=ZTERM usage=out> &status_term;

 <dtafld datavar=ZKEYS usage=out> &status_pfkeys;

 <dtafld datavar=ZSCREEN usage=out>&status_scrnum;

 <dtafld datavar=ZLANG usage=out> &status_lang;

 <dtafld datavar=ZAPPLID usage=out>&status_appl;

 <dtafld datavar=ZENVIR usage=out> &status_rel;

 </dtacol>

 </region

<!’-- panel logic file embed -->

 &ispzprim;

</area>

<region>

 <info width=78>

 <lines>

&panel_instruct_1;&panel_instruct_2;

 </lines>

<p>5655-042 (C) COPYRIGHT IBM CORP 1982, 1996

 </info>

</region>

</panel>

Figure 42. ISPF primary option menu DTL source (Part 4 of 4)

132 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

and modify the DTL source code to:

1. Define the point-and-shoot option text

2. Define the option description text

3. Add an <ACTION> tag for each additional option.

See the z/OS ISPF Dialog Tag Language Guide and Reference for a description of

Dialog Tag Language syntax and information about compiling DTL panels.

Compile the modified DTL source file using the ISPDTLC command, and review

the generated panel to confirm that your changes have been processed.

The required input field, ZCMD, appears in the second line of the panel body. It is

followed by a description of the various options.

This menu also has eight variables within text fields at the upper-right corner of

the screen. These reference system variables from the shared variable pool that

display user ID, time, terminal type, number of function keys, screen number,

language, application ID, and ISPF release number.

Defining table display panels

A table display panel is a special panel that is processed by the TBDISPL service.

When it is displayed, it has a fixed (nonscrollable) portion followed by a scrollable

table portion. The fixed portion is defined by the)BODY section in the panel

definition. The scrollable portion is defined by the)MODEL section.

The fixed portion contains the command field and usually the scroll amount field.

It can also include other input fields as well as output fields, action bars, text,

dynamic areas, scrollable areas, and a graphic area.

The scrollable portion is defined by up to eight model lines. These lines describe

how each table row is to be formatted within the scrollable data area. Attribute

characters in the model lines indicate whether each field is protected or

user-modifiable.

If a single model line is specified in the panel definition, each row from the table

corresponds to the format of that line. This results in scrollable data that is in

tabular format. For many applications, it may be useful to define the left-most

column in each line as an input field. The application user can enter a code to be

used by the dialog function to determine the particular processing for that row.

If multiple model lines are specified in the panel definition, each row from the

table corresponds to multiple lines on the screen. If desired, a separator line,

consisting of blanks or dashes, for example, can be specified as the first or last

model line. This format may be useful for address lists or other repetitive data in

which each unit will not fit on a single line.

Each definition using the model lines on the display is known as a model set.

Table display vocabulary

This topic defines some terms related to table display. Figure 43 on page 134

illustrates those terms that refer to parts of a TBDISPL display. The two main parts

of a TBDISPL display are the fixed portion and the scrollable portion. The fixed

portion contains the command field and commonly a scroll amount field and a

Chapter 6. Panel definition statement guide 133

top-row-displayed indicator. The scrollable portion contains the table information

and usually, if the screen is not filled, a bottom-of-data marker.

auto-selection

The process by which the row specified in the CSRROW parameter or

.CSRROW control variable is selected, even if the user did not explicitly

select that row by modifying the corresponding model set displayed on the

screen.

 Relevant concepts include: selected row, user-selection, CSRROW

parameter, .CSRROW control variable, AUTOSEL parameter, and

.AUTOSEL control variable.

bottom-of-data marker

The low-intensity text that appears after the last displayed row in the last

page of data in a TBDISPL display. If there are no displayed rows, this

marker will be the only information displayed in the scrollable portion.

The text BOTTOM OF DATA, with asterisks on each side, appears after the last

row on a table display. The dialog can define an alternate marker by

assigning text to ZTDMARK.

 ISPF uses the + default attribute character for the bottom-of-data marker.

The default attribute characters are %, +, and _. For a description of the

default attribute characters see “Using default attribute characters” on page

173. You can change the default attribute characters by using the DEFAULT

keyword on either the)ATTR or)BODY head statement. For example:

DEFAULT(abc) where a, b, and c are the 3 characters that take the place of

%, +, and _, respectively. The default attribute characters are

position-sensitive. Thus, if you change the default character ″b″ in the

second position of the DEFAULT keyword parameter (ISPF’s default

character is +), it must maintain the characteristics of TYPE(TEXT),

INTENS(LOW), COLOR(BLUE) for the bottom-of-data marker to display

correctly.

 Relevant concepts include: system variable ZTDMARK.

command field

A required field in the fixed portion of a TBDISPL display where

 Command Field Top-Row-Displayed Indicator

 | |

 | |

 +--------------V-------------------------------V------------+

 | ------------------- Population Change ------ ROW 4 OF 10 | ----* Scroll

 | Command ==> Scroll ==> PAGE| <----- Amount

 | | | Field

 | This table shows selected metropolitan areas which had a | |

 | large relative increase in population from 1970 to 1980. | | Fixed

 | | | Portion

 | Metro area State Change | |

 | (Percent) | ----*

 | Fort Collins co +66.0 | ----*

 | West Palm Beach fl +64.3 | | Scrollable

 | Fort Lauderdale fl +63.6 | | Portion

 | Bryan tx +61.5 | |

 | Reno nv +60.0 | |

 | Provo ut +58.4 | |

 | McAllen tx +56.1 | | Bottom-

 | ******************** BOTTOM OF DATA ******************** <-------- of-Data

 | | ----* Marker

 +---+

Figure 43. Parts of a TBDISPL display

134 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

commands are entered. The command field can be identified in the panel

definition through use of the CMD parameter on the)BODY statement. If

the CMD parameter is not specified, the first input field is assumed to be

the command field.

 Relevant concepts include: system commands, application commands, and

function commands.

dynamic expansion

The process by which a table being displayed is expanded as needed if a

user scrolls beyond the top or bottom of data contained in the table at the

time of the scroll request.

 Relevant concepts include: scrolling and TBDISPL.

fixed portion

The nonscrollable portion of a TBDISPL display. That is, the part of the

display that is not affected by the UP or DOWN commands. Note that

both the fixed and scrollable portions are unaffected by the LEFT and

RIGHT commands. The fixed portion is defined by the)BODY section of

the panel definition.

 Relevant concepts include: scrollable portion,)BODY section.

model lines

The lines in the)MODEL section of a TBDISPL panel definition, which

form a template, or model, for the scrollable portion of a TBDISPL display.

 Relevant concepts include:)MODEL section, model set, scrollable portion.

model set

The lines in the scrollable portion of a TBDISPL display that correspond to

a particular table row. Model sets are created by ISPF by replicating the

model lines in the panel definition and then filling in the fields with

variable and table row information. Each model set on the display

corresponds to a table row. If there are n model lines, where n can be from

1 to 8, then each model set is made up of n lines on the display.

 Relevant concepts include: model lines, and scrollable portion.

pending END request

The situation that exists when a user has selected more than one row and

has entered the END or RETURN command. The dialog can choose to

ignore the selected rows, or it can process the selected rows in a TBDISPL

series. In the latter case, each call of TBDISPL results in a return code of 8.

When all the selected rows have been processed, the dialog commonly

honors the pending END request by not invoking the TBDISPL service

again.

 Relevant concepts include: TBDISPL series, pending scroll request, and

pending selected row.

pending scroll request

The situation that exists when a user has selected one or more rows, and

has entered the UP or DOWN command. After the dialog has processed all

the selected rows, it can invoke TBDISPL without the PANEL and MSG

parameters to display the table and panel and have the pending scroll

request honored. A pending scroll request can also exist when a user has

issued the UP or DOWN command and the dialog is dynamically building

the table. After adding the rows needed to satisfy the scroll request, the

dialog can invoke TBDISPL without the PANEL or MSG parameters and

ISPF will honor the pending scroll request.

Chapter 6. Panel definition statement guide 135

Relevant concepts include: TBDISPL series, pending END request, pending

selected row, and controlling the top-row-displayed.

pending selected rows

Occurs when a user has selected more than one row in a single interaction.

Upon return from the TBDISPL display, the CRP is positioned to the first

of the selected rows. The other rows, which remain to be processed, are the

pending selected rows.

 Relevant concepts include: selected row, TBDISPL series, pending END

request, pending scroll request, system variable ZTDSELS.

scroll amount field

An optional field in the fixed portion of a TBDISPL display where scroll

amounts, for example, PAGE, HALF, or 10, are entered. If the input field

immediately following the command field is exactly 4 characters long, it is

assumed to be the scroll amount field.

 Relevant concepts include: scrolling, and system variables ZSCROLLA and

ZSCROLLN.

scrollable portion

The part of a TBDISPL display defined by the)MODEL section of the

panel definition and made up of model sets. It contains the ISPF table

information. It is affected by the UP and DOWN commands.

 Relevant concepts include: fixed portion,)MODEL section, model lines,

and model sets.

select field

A field in the scrollable portion where line commands are entered. For

example, a d entered into the select field of a model set can indicate that

the corresponding table row is to be deleted. TBDISPL does not officially

identify any field as a select field. It is up to the dialog to determine the

characteristics or meaning of a select field.

 Relevant concepts include: line commands, scrollable portion, model set,

selected row, and user-selection.

selected row

A row in an ISPF table that has been auto-selected or user-selected.

 Relevant concepts include: auto-selection, user-selection, model set,

pending selected row, system variable ZTDSELS, POSITION parameter,

and ROWID parameter.

TBDISPL series

A call of the TBDISPL service that results in a display where the user

selects more than one row, followed by calls of the TBDISPL service

without the PANEL and MSG parameters to process the pending selected

rows.

 Relevant concepts include: pending selected rows, pending END request,

pending scroll request, and system variable ZTDSELS.

top-row-displayed indicator

There are three possible texts for the top-row-displayed indicator:

v ROW x OF y

x is the current row pointer of the top row displayed. y is the total

number of rows in the table.

v ROW x TO z OF y

136 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

x is the current row pointer of the top row displayed. z is the row

pointer of the last visible table row. z is calculated as the current row

pointer of the top row displayed plus the number of lines displayed

minus one. y is the total number of rows in the table.

v ROW x FROM y

x is the row pointer of the table row that has met the criteria of the

SCAN. y is the total number of rows in the table.

The text used for the top-row-displayed indicator is determined by the

CUA mode selected and by whether ROWS is set to ALL or SCAN in the

panel model section. Table 5 is a summary of the CUA mode and

ROWS(ALL) or ROWS(SCAN) combinations and the resulting

top-row-displayed messages. CUA mode of YES is determined by the

presence of a panel statement or by specifying CUA MODE=YES on

Option 0.

 Table 5. Text for top-row-displayed indicator

CUA Mode ROWS Top-Row-Displayed Message Message ID

YES ALL ROW x TO z OF y ISPZZ102

YES SCAN ROW x FROM y ISPZZ103

NO ALL ROW x OF y ISPZZ100

NO SCAN ROW x OF y ISPZZ100

The message text appears right-justified on the top line of the display, or

just below the action bar separator line if an action bar is defined. Your

dialog can define an alternate indicator if you assign a message ID to

ZTDMSG. TBDISPL invokes the GETMSG to get the short and long

message text. If a short message is found, it is used as the

top-row-displayed indicator; if not, the long message text is used. In either

case, any variables in the messages are substituted with their current

values. If ZTDMSG does not exist, the long form of message ISPZZ100,

ISPZZ102, or ISPZZ103 is used.

 If the model section for a table contains more than one line, it is possible

that the entire model section will not fit on the screen. In this case, the last

rows of the table area are left blank. A partial model section is not

displayed. The only way to display a partial model section is if you

request your function keys to appear over your table display, or if you split

your screen over your table display.

 When you specify ROWS(SCAN) in your panel model section, ISPF finds

only enough rows to fill the display, thus providing a performance boost.

Therefore, you cannot know the entire number of table rows that meet

your search criteria without scrolling through the complete table.

 When a table is being built dynamically to satisfy scroll requests, you can

make the top-row-displayed indicator reflect the positioning in the logical

table instead of the physical table. See the description of ZTDLTOP and

ZTDLROWS in z/OS ISPF Services Guide.

 Relevant concepts include: system variables ZTDMSG, ZTDTOP, ZTDLTOP,

ZTDROWS, and ZTDLROWS; messages ISPZZ100, ISPZZ101, ISPZZ102,

and ISPZZ103; and controlling the top-row-displayed.

user-selection

The process by which ISPF table rows are chosen or selected for processing

by the user modifying the corresponding model sets on the display. A user

Chapter 6. Panel definition statement guide 137

modifies a model set by entering data into that model set. Overtyping a

model set with the same data does not cause the row to be selected.

 Relevant concepts include: auto-selection, selected row, model set, and

system variable ZTDSELS.

Requirements for attribute section

Attribute characters can be defined for use in the panel body and the model lines.

In the)BODY section, any attribute except EXTEND(ON) and SCROLL(ON) can be

associated with any field or area. In the)MODEL section, any attribute except

those associated with dynamic and graphic areas can be used with any field. That

is, the attributes AREA, EXTEND, SCROLL, USERMOD, and DATAMOD are not

allowed in model lines.

Input and output fields default to CAPS(ON) and JUST(LEFT), in the)BODY

section, but they default to CAPS(OFF) and JUST(ASIS) in the)MODEL section.

An attribute section is required if the model line contains output fields. There is no

default attribute character for output fields.

Requirements for body section

The panel body section is required. It contains the nonscrollable data, which is the

command field and, commonly, the scroll amount field. The rules for their

definition are:

Command field (required)

This field must not be longer than 255 characters.

 The command field can have any desired name. The position of the

command field can be specified through use of the CMD parameter on the

)BODY statement. If the CMD parameter is not specified, the first input

field is assumed to be the command field.

 The command field is used, as on other types of panels, to enter ISPF

commands and application-defined commands, if any. Any commands

entered in this field that are not recognized by ISPF are automatically

stored in the corresponding dialog variable. Upon return from TBDISPL,

the dialog function can interpret this field and take appropriate action. The

ZCMD field is cleared each time a TBDISPL request is received with the

MSG or PANEL parameter. If the TBDISPL request contains a table name

and no other parameters, the ZCMD field contains what was entered on

the previous TBDISPL.

 The ISPF commands are system commands, while the application-defined

commands are application commands. The commands processed by the

dialog function are function commands.

Scroll amount field (optional)

If the input field immediately following the command field is exactly 4

characters long, it is assumed to be the scroll amount field.

 The field can have any desired name. Its initial value can be set in the

)INIT section of the panel definition to any valid scroll amount.

 If no scroll amount field is specified, the system variable ZSCROLLD,

which can be set by a dialog, is used to determine the default scroll

amount. If there is no scroll amount field and ZSCROLLD has not been set,

PAGE is assumed.

 When a user enters a scroll request, variables ZSCROLLA and ZSCROLLN

are set. ZSCROLLA contains the value of the scroll amount field (MAX,

138 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

CSR, for example). ZSCROLLN contains the number of lines or columns to

scroll, computed from the value in the scroll amount field. For example, if

a dialog is in split-screen mode and if 12 lines are currently visible and a

user requests DOWN HALF, ZSCROLLN contains a ’6’. The system

variable ZVERB contains the scroll direction, DOWN in this case. If

ZSCROLLA has a value of MAX, the value of ZSCROLLN is not

meaningful.

 These can appear in the)BODY section:

v Action bars

v Text

v Variables within text; for example, &XYZ

v Input fields

v Output fields

v Dynamic areas

v Scrollable areas

v Graphic areas.

Notes:

1. Only one extendable area is allowed on a panel. This includes dynamic,

scrollable, and graphic areas.

2. Graphic areas are not supported when you are running in GUI mode. When

a GRINIT statement is encountered, you will receive a message that panels

with graphics will not be displayed. You may choose to continue. When a

panel with graphics is encountered, you will receive an error message that

the panel cannot be displayed.

If you are running in split-screen mode, the graphic area panel cannot be

displayed on the host session.

If you specified GUISCRD or GUISCRW values on the ISPSTRT invocation

which are different from the actual host screen size, GDDM cannot be

initialized and the GRINIT service will end with a return code of 20.

Requirements for model section

The panel body must be followed by a model section. This section begins with a

)MODEL header statement and is immediately followed by one or more model

lines.

The)MODEL header statement must begin in column 1. These optional keywords

can be specified on this header:

v CLEAR(var-name,var-name ...)

v ROWS(ALL|SCAN).

v SFIHDR

The CLEAR keyword identifies the dialog variable names within the model lines

that are to be cleared to blank before each row in the table is read. For example,

you can use this to clear the values of extension variables. Because extension

variables might not exist in all the rows that are displayed, clearing them ensures

that previous values are not repeated in other lines to which they do not apply.

CLEAR is not processed when the EXIT panel statement is actioned. Use a GOTO

to jump to a label before the next panel section to bypass panel code and have

CLEAR processing occur.

The ROWS keyword indicates whether all rows from the table are to be displayed,

or whether the table is to be scanned for certain rows to be displayed. The default

is ROWS(ALL), which causes all rows to be displayed. If ROWS(SCAN) is

Chapter 6. Panel definition statement guide 139

specified, the dialog must invoke the TBSARG service before invoking TBDISPL.

The search argument set up by the TBSARG service is used to scan the table. Only

rows that match the search argument are displayed.

The SFIHDR keyword is used when a variable model line defines scrollable fields

and scroll indicators are required for the scrollable fields. SFIHDR indicates that

the first variable model line defines scroll indicator fields for scrollable fields that

are defined on subsequent variable model lines.

One or more model lines must appear following the)MODEL header statement. A

maximum of eight model lines is allowed. Any attribute except those associated

with dynamic, graphic, or scrollable areas (AREA, EXTEND, SCROLL, USERMOD,

and DATAMOD) can be used with any fields in the model lines. These can appear

in the)MODEL section:

v Text

v Variable model lines

v Input fields

v Output fields.

These cannot appear in the)MODEL section:

v Action bars

v Variables within text

v Dynamic areas

v Graphic areas

v Scrollable areas.

Typically, the first field within the model lines specifies the dialog variable into

which a selection code, entered by a user, will be stored. All remaining names

correspond to columns in the table. However, this arrangement is not required.

Any name may or may not correspond to a column in the table, and a selection

code field need not be specified.

Text fields can be specified in the model line. A text attribute character can appear

by itself to terminate the preceding input or output field. Any characters that

appear within a text field in the model line are repeated in each line of the

scrollable data. This includes the letter Z. It is not treated as a variable name if it

occurs in a text field.

Variable model lines can be specified in the panel definition. If a variable, a name

preceded by an ampersand, begins in column 1 of any model line, the value of that

variable defines the model line.

These rules apply to variable model lines:

v The variable must be the only information on the model line. If any other data is

present, an error results.

v If the value of the variable is greater than the screen width, an error results.

v The variable can contain any character string that is a valid panel definition

model line, except that the variable cannot define a variable model line. A

variable whose value is all blanks is acceptable.

v If the variable contains the character string OMIT starting in column 1, that

variable model line will not be used in the model definition.

v All model line variables must be initialized before the table display service is

called with a nonblank panel name. Changes to the variables that occur within

the panel or the dialog function are not honored until table display is called

again with a nonblank panel name.

140 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

v If variable model lines are being used, the panel is retrieved from disk every

time that table display is called with a nonblank panel name and the value of

the variable model line has changed.

v If the SFIHDR keyword is specified on the)MODEL header statement, the first

variable model line is assumed to define scroll indicator fields for scrollable

fields that are defined on subsequent variable model lines.

Requirements for initialization section

An initialization section, if present, is processed when the TBDISPL service is

invoked with the panel name specified.

If Z variables occur as name placeholders within the model lines or the fixed

portion, an)INIT section is needed. The real names of these fields are defined by

assigning a name list, enclosed in parentheses if more than one name is given, to

the control variable, .ZVARS. For example:

)INIT

 .ZVARS = ’(NAME1,NAME2,NAME3)’

where NAME1, NAME2, and NAME3 are the actual variable names corresponding

to the first, second, and third Z variables in the body or model sections. For

example, if one Z variable occurs as a placeholder within the panel body and two

Z variables occur as placeholders within the model lines, then NAME1

corresponds to the field in the body and NAME2 and NAME3 correspond to the

two fields in the model lines.

The)INIT section of a TBDISPL panel definition can contain any statement that is

valid in an)INIT section of a DISPLAY panel definition.

Requirements for reinitialization section

If a)REINIT section is included, it is executed when TBDISPL is reinvoked without

a panel name or when a redisplay occurs automatically because of the .MSG

control variable being nonblank.

The)REINIT section of a TBDISPL panel definition can contain any statement that

is valid in a)REINIT section of a DISPLAY panel definition.

Any control variable except .ZVARS can be set within the)REINIT section. If table

variables that are in the model lines are referenced within the)REINIT section,

then the values for the current row, as specified by the CRP, are used. For example,

if the .ATTR control variable is set for fields that are in the)MODEL section, then

only fields in the model set on the display that corresponds to the current selected

row will have their attributes changed.

Requirements for processing section

If a)PROC section is included, it is executed before control returns to the dialog

function. It is not executed while the user is scrolling.

The)PROC section of a TBDISPL panel definition can contain any statement that is

valid in a)PROC section of a DISPLAY panel definition.

Any control variable except .AUTOSEL and .ZVARS can be used in the)PROC

section. If table variables that are in the model lines are referenced within the

)PROC section, then the values for the current row, as specified by the CRP, are

used. For example, if the .ATTR control variable is set for fields that are in the

)MODEL section, only fields in the model set on the display that corresponds to

the current selected row will have their attributes changed.

Chapter 6. Panel definition statement guide 141

The)PROC section can check the value of ZTDSELS to determine if any rows were

selected. This value and its interpretation are:

0000 No selected rows

0001 One selected row (now the current row)

0002 Two selected rows, consisting of the current row and a pending selected

row

0003 Three selected rows, consisting of the current row and two pending

selected rows

... And so forth.

Using control variables

Two control variables, .AUTOSEL and .CSRROW, can be used in the

executable—)INIT,)REINIT, and)PROC—sections of a TBDISPL panel definition.

They are ignored in a DISPLAY panel definition.

The .AUTOSEL and .CSRROW control variables can be used to control the

selection (and preselection) of a row in a table display. For more information about

these variables, see “.AUTOSEL” on page 289 and “.CSRROW” on page 290.

Processing panels by using the TBDISPL service

When a panel is displayed by the TBDISPL service, the model lines in the)MODEL

section are duplicated at the end of the logical screen. When the scrollable portion

of the screen is being formatted, only full units or duplications of these model lines

are usually displayed. Two exceptions are:

v When the command line is repositioned to the bottom of the screen, the line

above it, which can be a model line, may be overlaid with a blank line and used

as the long message line. This prevents table display data from being overlaid

with long message data.

v When the PFSHOW command is in effect, up to four additional lines can be

overlaid.

Each input or output field that has a corresponding column in the table is

initialized with data from succeeding rows from the table. The first row displayed

is the row pointed to by the CRP when TBDISPL was issued.

Input or output fields in a model line that do not correspond to columns in the

table are initialized, in all rows, with the current contents of the corresponding

dialog variables. If these fields are to be blank, the corresponding variables must

be set to blanks or null before each call of TBDISPL. The CLEAR keyword can be

used to specify that they are to be blanked.

A user can scroll the data up and down. Scroll commands, such as DOWN 5, apply

to the number of table entries to scroll up or down. For example, if three model

lines are specified, DOWN 5 would scroll by 5 table entries, which corresponds to 15

lines on the display.

A user can enter information in any of the input fields within the fixed or

scrollable portion of the panel.

Figure 44 on page 143 shows a sample panel definition for table display.

142 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Assuming that the current contents of the table are as shown in Table 6 and that

dialog variable DEPT contains ’27’, the resulting display is shown in Figure 45.

 Table 6. Table display data

EMPSER LNAME FNAME I PHA PHNUM

598304 Robertson Richard P 301 840-1224

172397 Smith Susan A 301 547-8465

813058 Russell Charles L 202 338-9557

395733 Adams John Q 202 477-1776

502774 Kelvey Ann A 914 555-4156

 In this example, the select field (left-most column) does not correspond to a

column in the table. It is used to return a selection code, entered by the user and

placed in a variable named SELECT. The other variables in the model line

correspond to variables in the table. The example also illustrates the use of two Z

)ATTR

 @ TYPE(OUTPUT) INTENS(LOW)

)BODY

%---------------------------- EMPLOYEE LIST ---------------------------------

%COMMAND INPUT ===>_ZCMD %SCROLL ===>_AMT +

+

%EMPLOYEES IN DEPARTMENT@Z +

+

+SELECT ------ EMPLOYEE NAME ------- -- PHONE --- EMPLOYEE

+ CODE LAST FIRST MI AREA NUMBER SERIAL

)MODEL

 _Z+ @LNAME @FNAME @I @PHA @PHNUM @EMPSER

)INIT

 .ZVARS = ’(DEPT SELECT)’

 &AMT = PAGE

 .HELP = PERS123

)REINIT

 IF (.MSG = ’ ’)

 &SELECT = ’ ’

 REFRESH (SELECT)

)PROC

 IF (&ZTDSELS ¬= 0000)

 VER (&SELECT, LIST, A, D, U)

)END

Figure 44. Table display panel definition

 ---------------------------- EMPLOYEE LIST -------------------- ROW 1 OF 5

 COMMAND INPUT ===> _ SCROLL ===> PAGE

 EMPLOYEES IN DEPARTMENT 27

 SELECT ------ EMPLOYEE NAME ------- --- PHONE --- EMPLOYEE

 CODE LAST FIRST MI AREA NUMBER SERIAL

 Robertson Richard P 301 840-1224 598304

 Smith Susan A 301 547-8465 172397

 Russell Charles L 202 338-9557 813058

 Adams John Q 202 477-1776 395733

 Caruso Vincent A 914 294-1168 502774

 ******************************* BOTTOM OF DATA *******************************

 ...

Figure 45. Table as displayed

Chapter 6. Panel definition statement guide 143

variables as placeholders in the body of the panel and in the model line, the

initialization of the scroll amount field to PAGE, and the specification of a

corresponding help panel.

The same table might be displayed by using several model lines with the panel

definition shown in Figure 46.

 The resulting display is shown in Figure 47 on page 145. An entry separator,

consisting of a dashed line, is also included as the last model line. In this example,

the SELECT field has been increased to 4 characters, with underscores used as pad

characters.

)ATTR

 @ TYPE(OUTPUT) INTENS(LOW)

 # TYPE(INPUT) PAD(’_’)

)BODY

%---------------------------- EMPLOYEE LIST ---------------------------------

%COMMAND INPUT ===>_ZCMD %SCROLL ===>_AMT +

+

%EMPLOYEES IN DEPARTMENT@Z +

+

+ENTER CHANGES ON THE LINES BELOW.

+

)MODEL

 #Z + SERIAL: @EMPSER + LAST NAME: @LNAME +

 PHONE: @PHA@PHNUM + FIRST NAME: @FNAME +

 INITIAL: @I +

)INIT

 .ZVARS = ’(DEPT SELECT)’

 &AMT = PAGE

 .HELP = PERS123

)END

Figure 46. Table display panel definition with several model lines

144 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Formatting panels that contain dynamic areas

ISPF facilities permit the format and content of a display to be determined in the

same dialog in which it is displayed. This is called dynamic formatting. See

“Specifying dynamic areas” on page 202 for information about how to specify a

dynamic area in the)ATTR section header.

Areas are reserved for this purpose in a panel definition and are called dynamic

areas. A dynamic area can encompass all or part of a panel display.

The format of a dynamic area is specified by a string of control and data

characters, stored in a dialog variable. This variable may have been produced

either in the current dialog or, earlier, in another dialog or program. The string

usually contains a mixture of nondisplayable attribute characters and data to be

displayed. The name of the dialog variable is chosen by the panel designer. This

name is placed in the panel definition within the dynamic area.

A dialog uses the DISPLAY, TBDISPL, or SELECT service to display a panel

containing a dynamic area. After the display and after entry of any input by the

user, data from within the dynamic area is stored in the variable, associated with

the area, and is available for processing by the dialog function.

When a panel is displayed, the number of lines in a dynamic area can be increased

automatically to accommodate the number of lines available on the terminal being

used for the display.

 ---------------------------- EMPLOYEE LIST -------------------- ROW 1 OF 5

 COMMAND INPUT ===> _ SCROLL ===> PAGE

 EMPLOYEES IN DEPARTMENT 27

 ENTER CHANGES ON THE LINES BELOW.

 ___ SERIAL: 598304 LAST NAME: Robertson

 PHONE: 301 840-1224 FIRST NAME: Richard

 INITIAL: P

 ___ SERIAL: 172397 LAST NAME: Smith

 PHONE: 301 547-8465 FIRST NAME: Susan

 INITIAL: A

 ___ SERIAL: 813058 LAST NAME: Russell

 PHONE: 202 338-9557 FIRST NAME: Charles

 INITIAL: L

 ___ SERIAL: 395733 LAST NAME: Adams

 PHONE: 202 477-1776 FIRST NAME: John

 INITIAL: Q

 ___ SERIAL: 502774 LAST NAME: Caruso

 PHONE: 914 294-1168 FIRST NAME: Vincent

 INITIAL: J

 ******************************* BOTTOM OF DATA *******************************

Figure 47. Table as displayed with several model lines

Chapter 6. Panel definition statement guide 145

Panel processing considerations

When you are defining a dynamic area and generating a dynamic character string

that defines the format of the data to be placed within that area on the panel, a

number of rules apply:

v The area cannot be specified by using a Z-variable place-holder within the panel

body.

v Within the dynamic area, all nonattribute characters are treated as data to be

displayed. Unlike other parts of the panel body, a variable name does not follow

an attribute character.

v The dialog is responsible for ensuring data integrity, validity of attribute codes,

and so on, for the dynamic character string.

v If the dynamic area has a width that is less than the screen size, the panel

designer must place the appropriate attribute characters around this box so that

the data within the area is not inadvertently affected. For example, the panel

designer can place fields with SKIP attributes following the right-most

boundaries so that the cursor is properly placed to the next or continued input

field within the area.

v If the dialog must know the dimensions of the dynamic area before the data is

formatted, this information is available by invoking the PQUERY dialog service.

All dialog services are described in z/OS ISPF Services Guide.

v The scroll amount field is optional. On a panel with a scrollable area, if the input

field following the command field in the panel body is exactly 4 characters long,

it is assumed to be the scroll amount field. Otherwise, the system variable

ZSCROLLD, which can be set by the dialog, is used to determine the default

scroll amount. If there is no scroll amount field and ZSCROLLD has not been

set, PAGE is assumed. ZSCROLLA contains the value of the scroll amount field,

such as MAX or CSR. ZSCROLLN contains the scroll number computed from

the value in the scroll amount field (number of lines or columns to scroll). For

example, if a user is in split-screen mode, 12 lines are currently visible, and the

user requests DOWN HALF, ZSCROLLN contains a ’6’. The system variable

ZVERB contains the scroll direction, DOWN in this case. If ZSCROLLA has a

value of MAX, the value of ZSCROLLN is not meaningful.

v A nonblank input or output field preceding a dynamic area must be terminated

by an attribute character.

v When variable substitution occurs within a text field in the panel body, the field

must be terminated by an attribute character, before a special character defining

a dynamic area. See “Using variables and literal expressions in text fields” on

page 115 for additional information about text field variable substitution.

Although panel display processing cannot provide point-and-shoot support for

dynamic areas, it does provide the PAS(ON) keyword for TYPE(DATAOUT). The

PAS(ON) keyword reflects the CUA point-and-shoot color. It is up to application

developers to provide the point-and-shoot function in programs they develop.

Similarly, while the panel display service does not perform the scrolling for

dynamic or graphic areas, it does provide an interpretation of the user’s scroll

request.

The value for the SCROLL keyword cannot be specified as a dialog variable.

A panel cannot have more than one scrollable area or more than one extended

area. The scrollable area can be a panel with a scrollable area or a table display.

146 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

These rules are applied in Figure 48.

 In this example, there are:

v 5 lines in the panel body before the extended area

v 3 more lines after the extended area.

This makes a total of 8 lines that are outside the dynamic area. Therefore, if the

panel were displayed on a 3278 Model 4, which has 43 lines, the depth or extent of

the dynamic area would be 43 minus 8, or 35 lines. In split-screen mode, the panel

is still considered to have a 35-line scrollable area, even though part of it is not

visible.

In this example, the dynamically generated data string to be placed in the area is

taken from the dialog variable SAREA. If, for example, the dynamic area is 60

characters wide and 10 lines deep, the first 60 characters of the string are placed in

the first line of the area, the next 60 characters are placed in the second line of the

area, and so on, until the last 60 characters are placed in the tenth line of the area.

Following a user interaction, the contents of the area are stored in the same

variable.

The width of the dynamic area includes the special characters that designate the

vertical sides. These delimiter characters do not represent attribute characters.

A number of the capabilities described in the previous sections have implications

for panel areas as well as panel fields. These include:

v A REFRESH statement can be used to reset an area when reinitializing or

redisplaying a panel. The variable value is again read and placed in the area.

Since the value also contains attribute information that may have changed, the

characteristics for each field are again analyzed.

v The cursor placement capability applies to dynamic areas. That is, .CURSOR can

be assigned to a dynamic area name and .CSRPOS can be assigned to a position

within the dynamic area. The position within an area applies within the

rectangular bounds of that area.

v The .ATTRCHAR control variable can be used to override attribute characters

that are used within dynamic areas. In addition, .ATTRCHAR can be used to

define a new attribute character that has not been previously listed within the

panel)ATTR section. Using .ATTRCHAR as a vehicle for defining new attribute

characters can be done only within the)INIT section and only for fields within

dynamic areas (TYPE(DATAIN) or TYPE(DATAOUT)).

v The PQUERY service can be invoked by the dialog function to determine the

characteristics of the dynamic area before the dialog function constructs the

dynamic character string.

)ATTR

 # AREA(DYNAMIC) SCROLL(ON) EXTEND(ON)

)BODY

%-------------------- TITLE -----------------------

%COMMAND ===>_ZCMD +SCROLL ===>_AMT +

+

+ (Instructions for this panel ...)

+

#SAREA ---#

+

+ (More instructions for this panel ...)

+

Figure 48. Panel definition illustrating SCROLL and EXTEND

Chapter 6. Panel definition statement guide 147

Character-level attribute support for dynamic areas

ISPF allows you to associate character-level attributes with individual characters

within a dynamic area. Each character in the dynamic area can be assigned

characteristics of color and extended highlighting, which override these attribute

values identified in the field attribute. You can also specify that a graphic escape

(GE) order be used to display a graphic character from an alternate character set.

See “Defining the attribute section” on page 172 for more information.

Note: Character-level color and extended highlighting will be ignored when

running in GUI mode.

These attributes are treated as character attributes only if they are used in the

shadow variable for the dynamic area; otherwise, they are treated as text. See

“Specifying character attributes in a dynamic area” for more information on

shadow variables.

Dialog variables can be substituted for the values of the COLOR, HILITE, and GE

keywords in the same way they are substituted for field attributes.

The .ATTRCHAR control variable may be used to override the COLOR, HILITE,

and GE keywords for character attributes in the same way it is used to override

field attributes. The TYPE keyword cannot be overridden from TYPE(CHAR) to

any other type, nor can a different type value be overridden as TYPE(CHAR). See

“Relationship to Control variables .ATTR and .ATTRCHAR” on page 207.

See the z/OS ISPF Dialog Tag Language Guide and Reference for details on defining

character attributes within dynamic areas in panels created using DTL.

Specifying character attributes in a dynamic area

If a dynamic area is to contain character attributes, a shadow variable must be

defined. The TYPE(CHAR) attributes must be placed in this variable such that they

map to the characters in the dynamic area affected by the attribute. ISPF ignores

any other characters or field attributes that are placed in this shadow variable, but

it is recommended that blanks be used as filler characters.

Note: If consecutive characters have the same character attributes (an entire word,

for example), the attribute character must be repeated in the shadow

variable for EACH character affected. For panels to be displayed on DBCS

terminals, a TYPE(CHAR) attribute should only map to the first byte of a

double-byte character.

The shadow variable is associated with the dynamic area by placing the shadow

variable name after the dynamic area name in the panel definition. The two

variable names must be separated by a comma only, and the shadow variable

name must be followed by a blank.

Note: The dynamic area and shadow variables cannot be Z variables in the panel

source.

See the z/OS ISPF Dialog Tag Language Guide and Reference for details on specifying

a shadow variable using Dialog Tag Language.

Conflict resolution between attributes

If the terminal does not support the specified TYPE(CHAR) attribute of color or

extended highlighting, this attribute is ignored and defaults to the field attribute.

148 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

If the terminal does not support the graphic escape order, or if the character

defined by TYPE(CHAR) GE(ON) is not in the range ’40’X through ’FE’X, ISPF

does not place a GE order in the order stream before this character and displays

this character as a blank.

v The dialog can check the system variable ZGE to determine if the terminal

supports the graphic escape order. If it does not, the dialog can substitute

different characters in the dynamic area.

 Table 7. Characteristics of the ZGE system variable

Name Pool Type Len Description

ZGE shr non 3 Terminal support for graphic escape order:

v YES — graphic escape is supported

v NO — graphic escape is not supported

Note: When running in GUI mode, ZGE is set to

NO. Any character defined with GE(ON) will

display as a blank.

If a TYPE(CHAR) attribute is defined with other keywords such as INTENS, CAPS,

JUST, or PAD in addition to COLOR, HILITE, or GE, only the COLOR, HILITE,

and GE keywords are recognized. If the GE keyword is specified for any type

other than TYPE(CHAR), TYPE(ABSL), TYPE(WASL), or TYPE(CH), it is ignored. If

a TYPE(CHAR) attribute is specified in the shadow variable that contains neither

the COLOR nor the HILITE keywords, the character defaults to the field attribute.

Any character attribute specified in the shadow variable that maps to the location

of a field attribute character in the dynamic area variable is ignored. (For instance,

see Figure 49 on page 150. A $ in the first character position of the variable

SHADOW is ignored because the first character position in the variable

CATTAREA is a ¬ indicating a field attribute.)

On DBCS terminals, ISPF ignores any TYPE(CHAR) attribute that maps to a

character that precedes the first field attribute. Following the first field attribute,

any TYPE(CHAR) attribute that maps to the second byte of a double-byte character

is ignored. In addition, the GE(ON) keyword specified for a TYPE(CHAR) attribute

that maps to a double-byte character is ignored.

A character attribute specifying the GE(ON) keyword can be defined within a

TYPE(DATAIN) field. However, any data typed into this character position might

be returned to the dialog as an unpredictable character.

Character attributes are associated with a character and not with the character’s

position in the buffer. If a character is moved, for example, because of an insert or

delete operation, the attribute moves with the character.

The screen image recorded in the list data set as a result of the PRINT, PRINT-HI,

PRINTL, or PRINTLHI contains a blank character for all character attributes

defined with the GE(ON) keyword.

Figure 49 on page 150 shows an example of the panel source for a panel with a

dynamic area containing character attributes.

Chapter 6. Panel definition statement guide 149

The next example shows how the dynamic area and shadow variables are defined

and initialized in a PL/I program to display the panel shown.

 In the panel displayed from the examples shown, the F in the word Fox is yellow

and displayed in reverse video, the ox in the word Fox is blue and underscored,

the C in the word Cat is red with no highlighting, and the at in the word Cat as

well as the rest of the sentence, defaults to the field attribute and is displayed low

intensity and white with no highlight.

Formatting panels that contain a graphic area

ISPF panel definition syntax allows specification of a graphic area within a panel.

An ISPF display can contain a picture or graph generated through use of the

Graphical Data Display Manager (GDDM) licensed program. A graphic area

defined within a panel definition provides part of the interface between ISPF and

GDDM. A graphic area can contain either a picture, constructed by use of GDDM

services or a graph, constructed by use of the GDDM Presentation Graphics

Feature (PGF). Graphic areas can contain alphanumeric fields within them,

represented in the usual panel field syntax. These fields can partially overlap the

graphic area.

Formatting of a graphic area display is controlled by GDDM.

When specifying a graphic area display, the dialog developer issues a request for

the ISPF GRINIT service specifying the name of the panel definition in which the

graphic area is defined. This request establishes the interface to GDDM. Next, calls

to GDDM that request GDDM services specify the picture to appear in that graphic

area. Then the ISPF DISPLAY service is used to display the panel.

The dialog must provide an 8-byte area, called an application anchor block (AAB),

which is on a full-word boundary, to the GRINIT call. This AAB identifies the

ISPF/GDDM instance and must be used in all GDDM calls made by the dialog.

Within the ISPF/GDDM instance, the dialog cannot perform any of these GDDM

calls:

ASREAD FSSHOR ISFLD MSPCRT MSQMOD PTNSEL WSCRT

FSSHOW ISQFLD MSPQRY MSQPOS PTSCRT WSDEL WSIO

FSENAB FSTERM ISXCTL MSPUT MSREAD PTSDEL WSMOD

)ATTR

 * AREA(DYNAMIC)

 $ TYPE(CHAR) HILITE(REVERSE) COLOR(YELLOW)

 > TYPE(CHAR) COLOR(RED)

 # TYPE(CHAR) COLOR(BLUE) HILITE(USCORE)

 ̂ TYPE(DATAOUT) INTENS(LOW) COLOR(WHITE)

)BODY

 %-------------------CHARACTER ATTRIBUTE PANEL------------------------

 %COMMAND ===>_ZCMD

 +The following will contain character attributes:

 CATTAREA,SHADOW ---

)END

Figure 49. Dynamic area with character attributes

 DECLARE CATTAREA CHAR(50) INIT /* Dynamic Area Variable */

 (’^These words contain character attributes: Fox Cat’);

 DECLARE SHADOW CHAR(50) INIT /* Shadow of Dynamic Area Variable */

 (’ $## ø ’);

150 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

FSEXIT GSREAD MSCPOS MSQADS PTNCRT PTSSEL WSSEL

FSINIT ISCTL MSDFLD MSQGRP PTNDEL PTSSPP WSSWP

FSRNIT ISESCA MSGET MSQMAP PTNMOD SPINIT

ISPF GDDM services do not run in the background, and thus, cannot be requested

in a batch environment. See “Defining the attribute section” on page 172 for

information using the AREA keyword in the)ATTR section to define a graphic

area.

Graphics panel processing considerations

ISPF automatically switches into graphics interface mode when the GRINIT service

is requested. This mode continues for the life of the ISPF session. GDDM is called

to perform all full-screen displays from this point on, or until a request for the

dialog service GRTERM is issued. These notes apply to graphics interface mode:

Stacked TSO commands

The field mark key is not available to enter commands at one time.

5550 terminals

GDDM graphics are supported through the Japanese 3270PC/G Version 3

emulator program. The ISPF-GDDM interface allows DBCS and

mixed-character fields in the panel body, outside the graphics area, to be

displayed through GDDM. Full color and highlighting are supported

through use of the Japanese 3270PC/G Version 3 and 3270PC Version 5

emulator programs.

3290 terminals

The vertical split function is disabled. Panels are displayed with a

larger-size character set. The partition jump key is not functional.

Alternate screen widths

You cannot use GDDM with terminal devices whose primary width is

different from their alternate width. For example, 3278 model 5.

Autoskip facility

When entering data in a field, GDDM automatically moves the cursor to

the next input field when the preceding field is full.

First field attribute

GDDM requires that the first field on a panel begin with an attribute

character. Therefore, the ISPF/GDDM interface copies the attribute

character for the last field on a panel to the first panel position. This can

result in the first byte of the panel data being overlaid.

Data transfer

The entire screen buffer is sent to the terminal even if no fields have been

modified.

NUMERIC (ON)

The numeric lock feature is not active when using GDDM.

Graphic output

GDDM calls issued from an application are used to define graphic

primitives for the next full-screen output and are unknown to ISPF. Any

full-screen output, following the ISPF full-screen output containing the

graphic area, can cause the loss of the graphic primitives on the ISPF

panel. Hence, the application can be required to reissue the GDDM calls.

Pop-up windows

Pop-up windows cannot be displayed over graphic areas nor can graphic

areas be displayed over pop-up windows.

Chapter 6. Panel definition statement guide 151

GUI mode

Graphic areas are not supported if you are running in GUI mode. When a

GRINIT statement is encountered, you will receive a message that panels

with graphics will not be displayed. You may choose to continue. When a

panel with graphics is encountered, a pop-up window is displayed asking

if you want the panel displayed on your host emulator session or on your

workstation without the graph.

Notes:

1. If you are in split-screen mode, the graphic area panel cannot be

displayed on the host session.

2. If you specified GUISCRD and GUISCRW values on the ISPSTRT

invocation which are different from the actual host screen size, GDDM

cannot be initialized and the GRINIT service will end with a return

code of 20.

Using DBCS-related variables in panels

These rules apply to substituting DBCS-related variables in panel text fields.

v If the variable contains MIX format data, each DBCS subfield must be enclosed

with shift-out and shift-in characters.

Example:

eeee[DBDBDBDBDB]eee[DBDBDB]

ee... represents a field of EBCDIC characters; DBDB... represents a field of DBCS

characters; [and] represent shift-out and shift-in characters.

v If the variable contains DBCS format data only, the variable must be preceded

by the ZE system variable, without an intervening blank.

Example:

...text...&ZE&DBCSVAR..text...

v If the variable contains EBCDIC format data, and it is to be converted to the

corresponding DBCS format data before substitution, the variable must be

preceded by the ZC system variable, without an intervening blank.

Example:

...text...&ZC&DBCSVAR..text...

The ZC and ZE system variables can be used only for the two purposes described.

When variable substitution causes a subfield length of zero, the adjacent shift-out

and shift-in characters are removed.

Using preprocessed panels

You can store preprocessed panel definitions to reduce transition time. These

preprocessed panel definitions are in an encoded format, and cannot be edited

directly.

Preprocessed panel data sets must be defined to ISPF as you would define other

data sets. This can be either by normal allocation before invoking ISPF, or

dynamically during an ISPF session by using the LIBDEF service. ISPF provides a

dialog, ISPPREP, for creating preprocessed panels. This dialog can be run either in

batch mode or interactively.

You invoke the ISPPREP dialog by:

v Issuing the ISPPREP command from the command line

v Selecting it from the Compilers pull-down on the ISR@PRIM panel.

152 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

v Specifying ISPPREP with the PGM keyword on the SELECT service request

To run ISPPREP by using the SELECT service, issue ISPPREP with no parameters.

For example, entering ISPEXEC SELECT PGM(ISPPREP) displays this selection panel:

 Entering ISPPREP from a command line or invoking ISPPREP from the Functions

choice on the action bar of the ISPF Primary Option Menu also causes this

selection panel to be displayed.

To run ISPPREP in batch mode, include the PARM keyword and the panel-input

and panel-output identifiers on the SELECT service request. For example:

ISPEXEC SELECT PGM(ISPPREP) PARM(INPAN(‘ISPFPROJ.GRE.PANELS(PANA)’),

OUTPAN(‘ISPFPROJ.PXY.PANELS(PANB)’) EXEC)

requests the SELECT service to convert member PANA in ISPFPROJ.GRE.PANELS

to the internal format and to write it to member PANB in ISPFPROJ.PXY.PANELS.

Note: The previous example must be run from a REXX or CLIST command

procedure.

You can control whether existing members in the output data set having the same

identification as that specified will be replaced. In batch mode, use the

NOREPL|REPLACE parameter with the PARM keyword for specifying whether

members are to be replaced. In interactive mode, use the line provided on the

panel shown in Figure 50 for specifying whether members are to be replaced.

ISPPREP converts panel input data set members to an internal format and writes

them to the specified output panel data set members. A given panel file can

contain a mixture of preprocessed panels and regular panel definitions.

ISPPREP does not destroy the source panels from which it creates preprocessed

panels. However, you should save those panels in case they must be updated in

the future. When the preprocessed panels are ready for use, you can use them to

replace the corresponding source files for the ISPPLIB defaults.

 Preprocessed Panel Utility

 Specify input and output data set names below:

 Panel input data set:

 Data set name . .

 Member (* for all members)

 Volume serial . . (If not cataloged)

 Panel output data set:

 Data set name . .

 Member (blank or member name)

 Volume serial . . (If not cataloged)

 Enter "/" to select option

 Replace like-named members

 / Save statistics for members

 Command ===>

 F1=Help F2=Split F3=Exit F9=Swap F10=Actions F12=Cancel

Figure 50. Panel for specifying preprocessed panel data sets (ISPPREPA)

Chapter 6. Panel definition statement guide 153

ISPPREP provides an option to generate statistics for preprocessed panels. ISPF

provides the version (always 1), modification counter, creation date last-modified

date, current number of lines, initial number of lines, number of modified lines

(always 0), and user ID for the message or panel. These statistics are visible on

memberlist displays such as ISPF BROWSE and EDIT. The statistics are placed in

the ISPF directory.

Restrictions for using ISPPREP

When using ISPPREP, you should note that certain restrictions apply to those panel

definitions that can be converted to their internal format. These restrictions apply

only when creating preprocessed panels and are based on the fact that

preprocessed panels cannot have a dynamically defined width and depth.

These restrictions apply to panel definitions to be converted:

1. The use of a dialog variable with the WIDTH keyword on the)BODY header

statement of a panel definition is not allowed.

2. The specification of EXTEND(ON) for the attribute character of a dynamic,

graphic, or scrollable area is not allowed.

3. The use of a dialog variable to define a model line in a table display panel

definition is not allowed.

4. For DBCS panels, the correct character set must be loaded before invoking

ISPPREP. Panels to be displayed on a 5550 3270 Kanji Emulation terminal must

be converted using the 3278KN character set (set in option 0.1).

Preprocessed panel objects should not be copied from a fixed to a variable record

format data set. Blank data could be lost. This can cause the product to abend or

can create a display error when the copied panel object is used by display

processing. Use ISPPREP to transfer preprocessed panel objects to a variable record

format data set or when the receiving data set logical record length or logical

record format is not the same as the source data set.

ISPPREP output data sets must conform to the same LRECL limits as ISPPLIB.

Using ISPPREP with the SELECT service

You can use the PGM keyword of the SELECT service to invoke ISPPREP. The

syntax for invoking ISPPREP is as follows:

 ISPEXEC SELECT PGM(ISPPREP) [PARM(INPAN(PDSin),

 OUTPAN(PDSout)

 [,INVOL(volser#)]

 [,OUTVOL(volser#)]

 [,NOREPL|REPLACE]

 [,STATS|NOSTATS]

 [,EXEC])]

The PARM keyword on the SELECT indicates that ISPPREP is to be run in batch

mode. The absence of the PARM keyword indicates that ISPPREP is to be run as

an interactive dialog and that PDSin, the panel input library, and PDSout, the

panel output library, are to be specified on a data-entry panel. Both the ISPPREP

command and option 2 on the ISP@PRIM primary option panel select ISPPREP in

interactive mode.

154 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

The panel input and panel output library identifiers, whether specified on the

SELECT statement when in batch mode or on the data entry panel when in

interactive mode, follow the same guidelines.

PDSin (panel input library)

The name of the library of panel definitions to be converted to their

internal format. PDSin must be in the form:

(‘partitioned data set name[(member)]’)

The member name can be specified either by indicating the specific name

or by coding an asterisk. Coding an asterisk for the member name

indicates that all members in the specified data set are to be converted to

preprocessed panels. This allows conversion of all panel definitions within

a data set in one call of ISPPREP.

 You cannot specify the same name for the input partitioned data set and

for the output data set, even if you specify REPLACE unless the data sets

exist on different volumes and you specify the appropriate volume serial

numbers by using the INVOL and/or OUTVOL parameters.

 When running in batch mode, you are not required to enter a member

name. The absence of the member name is equivalent to coding an asterisk

for the member name. In interactive mode, failure to explicitly state a

member name or an asterisk causes the data-entry panel to be redisplayed

with a message prompting the user for the member name.

PDSout (panel output library)

The name of the library to which the preprocessed panels will be written.

 The form of PDSout is the same as that of PDSin. You can specify a blank

or name for the member name. A blank indicates that the member name

specified for PDSin is to be used as the member name for PDSout.

 Coding an asterisk for a member name in PDSout is invalid.

INVOL (input PDS volume serial number)

Specifies the serial number of the volume on which PDSin is stored. If this

parameter is omitted, the system catalog is searched.

 It must be used when the data set exists but is not cataloged. INVOL is

optionally specified in batch mode as well as in interactive mode. In batch

mode the keyword (INVOL) is specified along with the volume serial

number as part of the SELECT statement.

OUTVOL (output PDS volume serial number)

Specifies the serial number of the volume on which PDSout resides. If this

parameter is omitted, the system catalog is searched.

 It must be used when the data set exists but is not cataloged. OUTVOL is

optionally specified in batch mode as well as in interactive mode. In batch

mode the keyword (OUTVOL) is specified along with the volume serial

number as part of the SELECT statement.

NOREPL|REPLACE

A keyword that specifies whether existing partitioned data set members

are to be replaced in PDSout. The default is NOREPL in batch mode. In

interactive mode, an option must be specified.

STATS|NOSTATS

User controls whether member statistics are to be saved in the ISPF

directory. The default option is STATS.

Chapter 6. Panel definition statement guide 155

EXEC Specifies that ISPPREP is being executed from a CLIST or REXX command

procedure. The EXEC parameter causes the return code to be set to 24 if a

space-related abend occurs on the output file.

 Any panel specified in the panel input library that is already a preprocessed panel

is copied directly to the panel output library (contingent on the

NOREPL|REPLACE specification).

ISPPREP should be invoked with the NEWAPPL keyword specified on the SELECT

statement. (This is necessary because ISPPREP issues LIBDEF service calls.) If

NEWAPPL is not specified, any LIBDEF issued before the execution of ISPPREP

can no longer be in effect.

Examples of using ISPPREP

v Convert PDS member PANA, in ISPFPROJ.GRE.PANELS, and write the

preprocessed panel to member PANB, in ISPFPROJ.PXY.PANELS, if it does not

already exist. Both PDSs are cataloged.

SELECT PGM(ISPPREP) PARM(INPAN(‘ISPFPROJ.GRE.PANELS(PANA)’),

 OUTPAN(‘ISPFPROJ.PXY.PANELS(PANB)’),

 NOREPL) NEWAPPL

v Convert PDS member PANA, in ISPFPROJ.GRE.PANELS, and unconditionally

write the preprocessed panel to member PANB, in ISPFPROJ.PXY.PANELS. Both

PDSs are cataloged.

SELECT PGM(ISPPREP) PARM(INPAN(‘ISPFPROJ.GRE.PANELS(PANA)’),

 OUTPAN(‘ISPFPROJ.PXY.PANELS(PANB)’),

 REPLACE) NEWAPPL

v Convert the entire PDS ISPFPROJ.GRE.PANELS, which contains three members

(PANA, PANB, and PANC), and unconditionally write the preprocessed panels

to PDS ISPFPROJ.PXY.PANELS, which contains three members also (PANA,

PANB, and PANC). Both PDSs are cataloged.

SELECT PGM(ISPPREP) PARM(INPAN(‘ISPFPROJ.GRE.PANELS(*)’),

 OUTPAN(‘ISPFPROJ.PXY.PANELS()’),

 REPLACE) NEWAPPL

v Convert the entire PDS ISPFPROJ.GRE.PANELS, which contains four members

(PAN1, PAN2, PAN3, and PAN4) and is cataloged. If the members do not

already exist, write the preprocessed panels to PDS ISPFPROJ.PXY.PANELS,

which is not cataloged

SELECT PGM(ISPPREP) PARM(INPAN(‘ISPFPROJ.GRE.PANELS(*)’),

 OUTPAN(‘ISPFPROJ.PXY.PANELS()’),

 OUTVOL(TSOPK7),NOREPL) NEWAPPL

v Convert the entire PDS ISPFPROJ.GRE.PANELS and unconditionally write the

preprocessed panels to PDS ISPFPROJ.PXY.PANELS. Both PDSs are not

cataloged.

SELECT PGM(ISPPREP) PARM(INPAN(‘ISPFPROJ.GRE.PANELS(*)’),

 INVOL(TSOPK7),

 OUTPAN(‘ISPFPROJ.PXY.PANELS()’),

 OUTVOL(TSOPK7),REPLACE) NEWAPPL

Handling error conditions and return codes

There are two general classes of error conditions involved with ISPPREP: those

associated with the dialog itself, and those associated with the conversion of

individual panel definitions.

The dialog error conditions encountered cause immediate termination of ISPPREP

conversion processing. If you are operating in interactive mode and recovery is

156 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

possible, the data-entry panel is redisplayed with an appropriate message.

Otherwise, ISPPREP will terminate. Dialog errors include conditions such as:

invalid input or output PDS names; a reference to a nonexistent PDS; or a

reference to an uncataloged PDS without providing the correct volume serial

number.

Panel conversion error conditions apply only to the current panel being converted.

They are usually due to an error in the panel definition. If such an error is

encountered, processing of the current panel definition halts, and processing of the

next panel definition (if it exists) begins. A panel conversion error associated with

one panel definition does not affect the conversion of subsequent panel definitions.

ISPPREP logs error and informational messages in ISPLOG. Any error conditions

encountered cause an appropriate message and return code to be written to the

log. This is also true for any conditions that warrant an informational message.

When ISPPREP is run in the foreground, the program uses the ISPF CONTROL

ERRORS CANCEL service to cause a terminating dialog box to be displayed when

a return code of 12 or greater is encountered.

If ISPPREP is run in the background (batch TSO), then CONTROL ERRORS

CANCEL is not set and ISPPREP passes the return code back to the calling

program. If ISPPREP has issued a message, variables ZERRMSG, ZERRSM, and

ZERRLM are written to the shared pool and the message is written to the log.

These return codes are possible from ISPPREP:

0 Normal completion.

4 Panel definition cannot be processed (see restrictions); NOREPL is specified

and the panel (member) already exists in the output library.

8 Panel definition contains syntax errors; panel already in use (enqueue

failed) or panel (member) not found.

12 Invalid syntax or keyword in parameter string; data set is not found.

16 Data set allocation or open failure.

20 Severe error.

24 A space-related abend occurred while ISPPREP was being executed from a

CLIST or REXX command procedure with the EXEC parameter specified.

Since ISPPREP can convert a number of panel definitions to their internal format in

one call, a number of conditions may arise that generate a return code other than

‘0’. ISPPREP returns the highest return code generated. However, if invoked in

interactive mode, ISPPREP will return ‘0’ unless an unrecoverable dialog error is

encountered, in which case the code returned is ‘20’. Refer to the log for a more

comprehensive look at ISPPREP’s results.

Chapter 6. Panel definition statement guide 157

158 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 7. Panel definition statement reference

The panel definition statement reference provides reference information to help

you define the sections of a panel. It covers the statements that can be coded in

each section, and control variables, which you can use to test conditions pertaining

to the display of a panel or message.

v “Defining panel sections”

v “Formatting panel definition statements” on page 235

v “Using ISPF control variables” on page 283

The sections, statements, and control variables in this panel definition statement

reference are arranged in alphabetical order.

Defining panel sections

Table 4 on page 106 describes the panel sections in the order in which they must be

defined.

For reference information for each of these panel sections, see:

)ABC— page 159

)ABCINIT— page 165

)ABCPROC— page 166

)AREA— page 166

)ATTR— page 172

)BODY— page 209

)CCSID— page 214

)END— page 215

)FIELD— page 215

)HELP— page 222

)INIT— page 223

)LIST— page 223

)MODEL— page 224

)PANEL— page 225

)PNTS— page 228

)PROC— page 232

)REINIT— page 233

Defining the action bar choice section

The)ABC (action bar choice) section defines an action bar choice for a panel and

its associated pull-down choices. An)ABC section must exist for each action bar

choice displayed in the Action Bar area on a panel. The maximum number of)ABC

sections on a panel is 40.

)ABC DESC(choice-description-text)[MNEM(number)]

where:

DESC(choice-description-text)

Text displayed in the panel’s action bar area for the action bar choice. The

maximum length of the text is 64 characters.

© Copyright IBM Corp. 1980, 2007 159

The action bar choice-description-text must match the choice-description-text

specified in the)BODY section of the panel. ISPF does not translate the value

to uppercase. If choice-description-text contains any special characters or

blanks, you must enclose it in quotes in the)ABC DESC parameter. However,

when it is specified in the)BODY section of the panel, you should not enclose

it in quotes. Each action bar choice should be unique.

MNEM(number)

Specifies the position of the character that will be the mnemonic for the action

bar text. The letter is designated by an underscore on the display. This

keyword, if it exists, must follow the DESC keyword. number is the position of

the character (not byte position).

 For SBCS/DBCS mixed choice-description-text, number cannot be the position

of a double-byte character position. Shift-in/shift-out bytes are not considered

characters. For action bar text containing double-byte characters, add a

single-byte character, enclosed in parentheses, to the end of the double-byte

text. The MNEM(number) is the position of this single-byte character. For

example:

 where DD, OO, UU, BB, LL, and EE represent double-byte characters, and 0E

and 0F are shift-out and shift-in characters. The single-byte character, M,

enclosed in parentheses is the mnemonic letter. MNEM(8) indicates the

underscored mnemonic letter is in the eighth character position (not byte

position). Shift-out and shift-in characters are not considered as character

positions.

 In 3270 mode you access the action bar choice in one of these ways, where ″x″

is the mnemonic letter that is underscored:

1. Enter ″ACTIONS x″ in the command field

)ATTR

 # TYPE(AB)

 @ TYPE(NT)

 ? TYPE(PT)

 $ TYPE ABSL ...
)ABC DESC(’Menu’) MNEM(1) ...
)BODY CMD(ZCMD)

@# Menu# Utilities# Compilers# Options# Status# Help@

$--

@ ?ISPF Primary Option Menu+ ...

)ATTR

 # TYPE(AB)

 @ TYPE(NT)

 ? TYPE(PT)

 $ TYPE ABSL ...
)ABC DESC(’OEDDOOUUBBLLEE0F(M)’) MNEM(8) ...
)BODY CMD(ZCMD)

@# 0EDDOOUUBBLLEE0F(M)# Utilities# Compilers# Options# Status# Help@

$--

@ ?ISPF Primary Option Menu+ ...

)ABC Section

160 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

2. Enter ″x″ in the command field and press the function key assigned to the

ACTIONS command.

The pull-down menu for that action bar choice displays. If you enter a

mnemonic letter, ″x″, that is not found to be an underscored mnemonic letter

on the panel, then the cursor is placed on the first action bar choice.

 In 3720 mode, panels without a command line will not display mnemonic

characters, because there is no command line on which to enter the ACTIONS

command and parameter. Terminals or emulators that do not support extended

highlighting will not display host mnemonics.

 In GUI mode you use a hot key to access an action bar choice; that is, you can

press the ALT key in combination with the letter that is underscored in the

choice. A hot key is also referred to as an accelerator key or shortcut key. If the

character in the ALT character combination is not found to be an underscored

mnemonic letter in the panel, then no action is taken.

Note: If you specify duplicate characters (case insensitive) for the mnemonics

within the action bar, the result of invoking the mnemonics is operating

system dependent.

Note: For each separate action bar choice section, you must define a corresponding

)ABCINIT (action bar choice initialization) section. An)APCPROC (action

bar choice processing) section is optional. You must include these sections in

the panel source definition in the proper order as shown in this example:

)ABC

)ABCINIT

)ABCPROC

Specifying action bar choices in panel)BODY section

The specification of an action bar choice is included in the panel source

immediately following the)BODY panel definition statement header. The order in

which the action bar choices are specified indicates to ISPF how the choices will

appear in the action bar area on the displayed panel. Internally, action bar choices

are numbered sequentially starting from left to right and from top to bottom. The

first action bar choice will be numbered one.

Notes:

1. A blank must separate the choice-description-text and the AB attribute

character. The attribute byte for the first choice can be in any column except

column 1. A text attribute character to delimit an action bar line should be

coded immediately following the last character of the last choice-description-
text on each action bar line.

2. A separator line should follow the last action bar line.

When the panel is displayed in GUI mode, the separator line (the line

following the last action bar choice) is not displayed.

3. ISPF considers the panel line following the last action bar choice as part of the

action bar area.

)ATTR

 @ TYPE(AB)

 # TYPE(NT) ...
)BODY

 @ choice1@ choice2@ choice3#

)ABC Section

Chapter 7. Panel definition statement reference 161

The action bar can consist of multiple lines by specifying action bar choices on

more than one line in the panel)BODY section.

)ATTR

 @ TYPE(AB)

 # TYPE(NT) ...
)BODY

 @ choice1@ choice2@ choice3#

 @ choice4@ choice5@ choice6#

Defining pull-down choices within the)ABC section

Within each action bar section, pull-down choices are defined with the PDC

statement.

 PDC DESC(choice-description-text)

[UNAVAIL(unavail_variable_name)]

[MNEM(number)]

[ACC(key1[+key2][+key3])]

[PDSEP(OFF|ON)]

where:

DESC(choice-description-text)

Actual text that is displayed for the pull-down choice it defines. Special

characters or blanks must be enclosed within quotes. The maximum length of

the text is limited to 64 characters. ISPF numbers each choice. Do not include

choice numbers in your text. The pull-down choices defined in each)ABC

section are internally numbered sequentially starting with the number one

(1,2,...,n) and the number is prefixed to the pull-down choice-description-text.

Note: Numbers do not appear with pull-down choices when you are running

in GUI mode.

UNAVAIL(unavail_variable_name)

Name of a variable that contains a value to indicate whether the pull-down

choice is available for selection when the panel is displayed. When the variable

contains a value other than 0 (false, therefore available) or 1 (true, therefore

unavailable), the variable is ignored and the choice is available. The choice is

available even if the specified variable cannot be found.

Note: The current setting is shown as an unavailable choice; that is, it displays

in blue (the default) with an asterisk as the first digit of the selection

number. If you are running in GUI mode, the choice is grayed. ISPF

issues an error message if you try to select it. You can change the color,

highlight, and intensity of an unavailable choice by using the CUA

Attribute Utility.

MNEM(number)

Specifies the position of the character that will be the mnemonic for the

pull-down choice text. The letter is designated by an underscore on the GUI

display. number is the position of the character (not byte position). For

SBCS/DBCS mixed choice-description-text, number cannot be the position of a

double-byte character. Shift-in/shift-out bytes are not considered characters.

Note: If you specify duplicate characters (case insensitive) for the mnemonics

within the action bar, the result of invoking the mnemonics is operating

system dependent.

)ABC Section

162 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

This keyword is ignored on a 3270 display.

ACC(key1[+key2] [+key3])

Specifies an accelerator, or shortcut, key. This is a key or combination of keys

assigned to a menu choice that initiates that choice, even if the associated

menu is not currently displayed. The accelerator key text is displayed next to

the choice it pertains to on the menu.

 The variables key1, key2, and key3 can be any of these keys: Ctrl, Shift, Alt,

Insert, Delete, Backspace, Fn, the single keys a through z, and 0 through 9. The

keys Ctrl, Shift, Alt, a through z, and 0 through 9 cannot be used as single

accelerator keys. They must be used in combination with other keys.

Rules for accelerator keys:

1. Avoid using the Alt key combined with a single character key as an

accelerator. Use Alt + char for mnemonic access only. Also, avoid using a

function key, or Shift + function key, as an accelerator.

2. These single keys must be used in combination with some other key: Ctrl,

Shift, Alt, A-Z, a-z, and 0-9.

3. Only one key can be a function key.

4. If you use a two key combination, one key must be Ctrl, Shift, or Alt, and

the other must be Insert, Delete, Backspace, F1-F12, A-Z, a-z, or 0-9.

5. If you use a three key combination, two key must be Ctrl, Shift, or Alt, and

the other must be Insert, Delete, Backspace, F1-F12, A-Z, a-z, or 0-9.

6. The combined text string cannot exceed 30 characters.

After you define your accelerators, remember to keep this accelerator search

order in mind when you press a key or combination of keys:

1. Operating system specific definitions. For example, in Windows XP,

Ctrl+Alt+Delete displays the Windows Security dialog box instead of

invoking a menu choice that might have this key combination specified as

an accelerator.

2. Menu choice accelerator definitions.

3. Accelerator assigned with the panel. For example, a function key.

4. System menu-type definitions. For example, Alt+F4 is defined in Windows

XP as an accelerator for closing the current window.

For example, if F2 is defined as an accelerator key on the ISPF Primary Option

Panel’s Menu pull-down for the EDIT option, and the F2 function key is set to

the ISPF SPLIT command, when you press the F2 key, EDIT is started instead

of the screen being split.

 Accelerators are a GUI-specific function. An option appears on the ISPF

Settings Panel (under GUI settings) that specifies whether or not accelerators

are supported. The default is to have the support. If you turn this setting off,

accelerators are not functional, and do not appear in the pull-down menus.

PDSEP(OFF|ON)

Specifies a pull-down choice separator bar. These are separators within a

pull-down that group logically related choices.

 The separator is a solid line between the previous choice and the first choice in

the logical group. You code the PDSEP keyword on the pull-down choice

AFTER the separator bar. That is, the separator bar is displayed above the

choice it is coded on.

)ABC Section

Chapter 7. Panel definition statement reference 163

Any separator coded on the first pull-down choice is ignored, and because the

function is GUI-specific, separator bars are ignored in the host environment.

You must associate the pull-down choice entry field with a variable name. To do

this, code a .ZVARS statement in the)ABCINIT section. This variable is used as the

pull-down entry field name of each pull-down.

The PDC statement is paired with an optional ACTION statement. When some

action is to be performed for a pull-down choice, an ACTION statement must

immediately follow the PDC statement defining the pull-down choice.

 ACTION RUN(command-name) [PARM(command-parms)]

where:

RUN(command-name)

Required keyword. Specifies the name of a command to be run. The command

name must be 2-8 characters. Coding the keyword ACTION RUN(x), where x

is a 1-character command name, results in an error condition. ISPF searches for

the command in the application, user, site, and system command tables, if they

are defined.

 You can use the ISRROUTE command, which is an ISPF command in

ISPCMDS, to invoke the SELECT service. The ACTION RUN statement is as

follows:

ACTION RUN(ISRROUTE) PARM(’SELECT your-select-command-parms’)

where your-select-command-parms contains all the required parameters for the

invocation of the SELECT service. This allows your dialog not to have to create

a separate command in the application command table for every RUN

statement coded within your dialog panels.

 Here is an example of invoking the SELECT service from an ACTION RUN

statement:

ACTION RUN(ISRROUTE) PARM(’SELECT PGM(USERLIST) NEWAPPL(USR)’)

PARM(command-parms)

Optional keyword. Specifies the parameters to use when processing the

command in the application, user, site, or system command table. Enclose the

command-parms value in quotes.

You can define only one ACTION statement per PDC statement in the)ABC panel

section. You can specify the RUN() or PARM() keywords in any order on an

ACTION statement. Also, if the RUN() or PARM() keywords are duplicated within

an ACTION statement, ISPF will use the last occurrence of the keyword. Figure 51

on page 165 shows an example of an action bar section definition.

)ABC Section

164 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Defining the action bar choice initialization section

The)ABCINIT section header statement has no parameters. ISPF associates the first

)ABCINIT section it encounters before another panel definition statement header

with the previous)ABC section.

)ABCINIT

The rules that apply to the)ABCINIT section and its contents are the same as those

that apply to the ISPF)INIT panel definition statements. However, the processing

is limited to the action bar choice and its pull-down.

The)ABCINIT section runs when the user selects that action bar choice.

Note: If you are running in GUI mode, the)ABCINIT section runs prior to sending

the panel to the workstation.

At least one statement must be specified in the)ABCINIT section. The)ABCINIT

section must contain a .ZVARS control variable assignment statement to associate a

field name with the pull-down entry field.

)PANEL

)ATTR

 @ TYPE(AB)

 # TYPE(NT) ...
)ABC DESC(FILE) MNEM(1)

 PDC DESC(file-choice1) ACC(Alt+F1)

 ACTION RUN(command-name) PARM(command-parms)

 PDC DESC(file-choice2) UNAVAIL(&unvar2)

 ACTION RUN(command-name) PARM(command-parms)

 PDC DESC(file-choice3) PDSEP(ON)

 ACTION RUN(command-name) PARM(command-parms)

)ABCINIT

 .ZVARS = PDCHOICE

 &PDCHOICE = ’

 &unvar2 = 1 ...
)ABCPROC

 VER (&PDCHOICE,LIST,1,2,3) ...
)ABC DESC(HELP)

 PDC DESC(help-choice1) MNEM(6)

 ACTION RUN(command-name) PARM(command-parms)

 PDC DESC(help-choice2)

 ACTION RUN(command-name)

 PDC DESC(help-choice3)

 ACTION RUN(command-name) PARM(command-parms) ...
)ABCINIT

 .ZVARS = PDCHOICE

 &PDCHOICE = ’ ...
)ABCPROC

 VER (&PDCHOICE,LIST,1,2,3) ...
)BODY

 @ FILE@ HELP# ...
)END

Figure 51. Action bar section example

)ABCINIT Section

Chapter 7. Panel definition statement reference 165

See “Formatting panel definition statements” on page 235 for additional

information.

Defining the action bar choice processing section

The)ABCPROC section header statement has no parameters. ISPF associates the

first)ABCPROC section it encounters before another panel definition statement

header with the previous)ABC section.

)ABCPROC

The rules that apply to the)ABCPROC section and its contents are the same as

those that apply to the ISPF)PROC panel definition statement. However, the

processing is limited to the action bar choice and its pull-down.

The)ABCPROC section runs when the user completes interaction with the

pull-down choice.

Note: If you are running in GUI mode, the)ABCPROC section runs after the

pull-down has been selected at the workstation.

The)ABCPROC section is not required. ISPF verifies all valid pull-down choices

for you.

When you manually position the cursor in the action bar area with the CANCEL,

END, or RETURN command on the command line, and you press ENTER, or if

you manually position the cursor in the action bar area and you press a function

key to run the CANCEL, END, or RETURN commands, the cursor is repositioned

to the first input field in the body of the panel. If there is not an input field, the

cursor is repositioned under the action bar area. If the request is to run the EXIT

command, the action taken is controlled by the application.

When you use the ACTIONS command to position the cursor in the action bar

area and you run the CANCEL command, the cursor is returned to where it was

before the ACTIONS command was run. A CANCEL command executed from a

pull-down removes the pull-down.

See “Formatting panel definition statements” on page 235 for additional

information.

Defining the area section

The)AREA (scrollable area definition) section allows you to define scrollable areas

on a panel. See “Defining the attribute section” on page 172 for information about

using the AREA(SCRL) keyword to specify that you want a scrollable area. You

can see and interact with the total content defined for the panel area by scrolling

the area.

Use the)AREA section header to describe the scrollable area.

)AREA name [DEPTH(depth)]

name

Specifies the name of the scrollable area that is to be matched with the name

specified in the)BODY section. This name cannot be specified as a dialog

variable.

)ABCINIT Section

166 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

DEPTH(depth)

Optional. Specifies the minimum number of lines in the scrollable area (not

including the scroll indicator line) when EXTEND(ON) has been specified.

DEPTH has no effect when EXTEND(OFF) is used. The top line is always

reserved for the scroll information and is not considered part of the depth

value. DEPTH can be used to ensure that a required number of lines are

displayed. The depth value cannot be specified as a dialog variable. It must be

greater than or equal to the number of lines defined for the area in the)BODY

section and less than or equal to the number of lines in the)AREA definition.

 A panel)AREA section defines the size and the contents of the information to be

scrolled. The contents of the)AREA section generally follow the same rules as the

)BODY section. See “Panel definition considerations” on page 168 for rules

concerning the definition of a scrollable area. Multiple scrollable areas can be

defined. The name specified immediately following an AREA(SCRL) character in

the)BODY section is used to match each scrollable area to its corresponding

)AREA section. If the default EXTEND(OFF) is used, you designate the desired

depth of the scrollable area by repeating the AREA(SCRL) attribute. If

EXTEND(ON) is specified, the minimum depth is the DEPTH specified in the

)AREA section.

The width of the scrollable area includes the special characters that designate the

vertical sides. These delimiter characters do not represent attribute characters.

The scrollable area is identified in the panel source with a new attribute defined in

the)ATTR section. This new attribute designates the borders of the scrollable area.

For example:

)ATTR

 # AREA(SCRL) EXTEND(ON)

)BODY

#myarea---------#

A single character, Z, can be used in the)AREA section, just as it can be used in the

)BODY section, as a place-holder for an input or output field. The actual name of

the field is defined in the INIT section with the control variable .ZVARS. The

actual field names are in a name list, with all the actual field names for the)BODY

and)MODEL sections. The actual field names must appear in the name list in the

order they appear in the panel definition, not in the order they will appear when

the panel is displayed. The names must appear in the)BODY section, then

)MODEL section, and then)AREA section order.

If you have defined several)AREA sections, the .ZVARS must be listed in order

from top-to-bottom left-to-right as they appear in the panel definition.

Cursor position determines how an area scrolls. This is called cursor-dependent

scrolling. If scroll down is requested, the line on which the cursor is placed is

moved to the top line. If the cursor is currently on the top line of the scrollable

area, the section is scrolled as total visible lines minus one. On a panel with only

one scrollable area, if the cursor is not within the area and scrolling is requested,

the area is scrolled by the total visible lines minus one. If scrolling an area causes

the last line of an area to not be the last visible line in the area, the cursor is

moved so that the last line of the area appears at the last visible line of the

scrollable area.

)AREA Section

Chapter 7. Panel definition statement reference 167

The top line of the scrollable area is reserved for the scroll indicators. Actual

information from the)AREA section is displayed beginning on the second line of

the scrollable area. The scroll indicators are displayed only if more data was

defined in the)AREA section than fits in the panel area.

The scroll indicators are displayed as follows:

More: + You can only scroll forward.

More: - You can only scroll backward.

More: - + You can scroll forward or backward.

Forward and backward function keys should be defined in the keylist for any

application panel that has scrollable areas.

The)AREA section can contain any of the items that can be included in the)BODY

section except for:

v Action Bar lines

v Graphics Area

v Model Section

v Command Line

v Alternate Message Locations

v Another scrollable area using AREA(SCRL)

v Dynamic Area using EXTEND(ON) or SCROLL(ON).

The)AREA section must fit within the general panel limit of 64K.

Panel definition considerations

When you are defining a scrollable area, a number of rules apply:

v The area cannot be specified by using a Z-variable place-holder within the panel

body.

v To allow for the scroll information, the minimum width for a scrollable area is

20. The minimum depth of the scrollable area is 2.

v If the width of the scrollable area is less than the screen size, you must place

appropriate attribute characters around this area so that the data within the area

is not inadvertently affected. For example, by using place fields with SKIP

attributes following the right-most boundaries of the area, you can ensure that

the cursor will tab correctly to the next or continued input field within the area.

v You must terminate an input or output field preceding a scrollable area with an

attribute character.

v A text field’s attribute character is only processed if the start of the field is

visible in the scrollable area. This means that text fields defined to wrap in a

scrollable area may not show their defined attribute when they are only partially

displayed. For example, if a field has the attribute HILITE(REVERSE), the text

will only appear in reverse video if the start of the field is visible in the

scrollable area.

v The initialization of variables in the scrollable area has nothing to do with Z

variables. The setting of .ZVARS simply associates the name of a variable with a

Z place holder. It does not initialize the variable value.

An explicit setting of the variable in the)INIT section will initialize the variable

whether it is in a scrollable area or not. Normally, variables that are not

explicitly defined are set to null by ISPF. This occurs because ISPF tries to

retrieve an existing value from the variable pool and finds that it is not defined.

ISPF then defines the variable and sets it to null.

)AREA Section

168 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

|

For scrollable areas, ISPF does not retrieve the variable unless it is to be

displayed. Therefore, a variable in a scrollable area that is not visible on the

screen does not get implicitly initialized. This is true for all the variables. If the

user wishes to initialize a variable it can be done by setting the variable to null

in the)INIT section.

If an EXTEND(ON) scrollable area is defined on a panel that does not have a

)BODY definition that covers the entire depth of the screen on which it is

displayed, the)BODY line over which the last line of the scrollable area is defined

is repeated for the remaining depth of the screen, or for the remaining number of

lines of data in the scrollable area, whichever is larger.

It is good practice to frame a scrollable area or to allow enough blank space so that

the definition of the scrollable area is clear. You should consult you own usability

standards to determine the best implementation.

Help panels

When a help panel is defined with a scrollable area, the Left, Right, and Enter keys

that currently scroll through the tutorial panels also scroll the scrollable area. When

running under tutorial and trying to scroll past the end of the scrollable area, a

message will be displayed indicating that no more information is available in the

scrollable area. If RIGHT or ENTER is pressed again, ISPF will follow the normal

tutorial flow and display the next help panel if one has been defined. The same is

true when scrolling to the TOP of the scrollable AREA; a message indicating that

no more information is available will be displayed, and if LEFT is pressed, the

previous tutorial panel will be displayed if one has been defined.

Cursor positioning usually defines which scrollable area will be scrolled. However,

when in tutorial, if the cursor is not within a scrollable area, the first area defined

in the)BODY section will be scrolled. The LEFT and RIGHT commands should be

included in any keylist specified for a scrollable help panel.

Panel processing

When a DISPLAY service is issued, the)INIT section is processed before the panel

is displayed on the screen. Each time you scroll and the panel is redisplayed, the

)PROC and)REINIT sections are not processed. The)PROC section is only

processed when the panel is submitted for processing as when the Enter or End

key is pressed.

When panel processing is complete and ISPF returns control to the dialog, it is

possible that required fields were not displayed. Therefore, unless a VER NB was

coded in the panel for a required field, it is possible that the application user never

scrolled the panel to see the field. It is your responsibility to ensure that all

required information is obtained.

When fields are displayed on a panel, their characteristics can change without the

user interacting with the fields. For example, when CAPS(ON) is set for a field,

this only affects fields that actually are displayed. If a field is initialized with

lowercase letters and it appears on a portion of the panel that is never displayed,

the data remains in lowercase even if CAPS(ON) was set for the field.

Scrollable area examples

Figure 52 on page 170 shows an invalid scrollable area definition. The last line of

the extendable scrollable area also contains a line of nonextendable text to its right.

)AREA Section

Chapter 7. Panel definition statement reference 169

Figure 53 shows a valid scrollable area definition. It is followed by the actual

scrollable panel displays.

)ATTR

 # AREA(SCRL) EXTEND(ON)

 $ AREA(SCRL)

)BODY

% New Patient Information

%Command ===>_ZCMD

%

+Name_pname %

+

#area1 ---------# $area2 --------------$

$ $

$ $

$ $

$ $

$ $

$ $

 $ $

 $ $

+

+Please fill in all information.

+

)AREA AREA1 DEPTH(5) ...
)AREA AREA2 DEPTH(5) ...

Figure 52. Invalid scrollable area definition

)ATTR

 # AREA(SCRL) EXTEND(ON)

)BODY

%

%Command ===>_ZCMD

%

+Patient name_pname %

+

#myarea ---#

+

+Please fill in all information.

+

Figure 53. Valid scrollable area definition (Part 1 of 2)

)AREA Section

170 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Figure 54 on page 172 shows the initial panel display, which contains a scrollable

area. More: + indicates that you can now scroll forward in the scrollable area.

)AREA MYAREA DEPTH(5)

+Personal information

+ Address_address %

+ City, State_ctyst %

+ Zip Code _zip %

+ Birth date _birth %

+ Sex_SX% (M=Male or F=Female)

+ Marital Status . . ._MS+1. Married

+ 2. Single

+ 3. Divorced

+ 4. Widowed

+

+ Home phone _hphone %

+ Work phone _wphone %

+

+Emergency Contact

+ Name _ename %

+ Home phone _ehphone %

+ Work phone _ewphone %

++Emergency Contact

+ Name _ename %

+ Home phone _ehphone %

+ Work phone _ewphone %

+

+Insurance Coverage

+ Insurance Company . ._insure %

+ Group number _gn%

+ ID number_ID %

+ Cardholder’s name . ._cname %

+ Relationship _RL+1. Self

+ +2. Spouse

+ +3. Parent

+ +4. Relative

+ +5. Other

+ Signature on file . ._SG+ (Y=Yes N=No)

)INIT ...
)PROC ...
)HELP ...
)END

Figure 53. Valid scrollable area definition (Part 2 of 2)

)AREA Section

Chapter 7. Panel definition statement reference 171

Figure 55 shows the panel display after one scroll request has been processed.

More: - + indicates that you can now scroll forward or backward in the

scrollable area.

 After you have completely scrolled through the scrollable area, More: -

indicates that you can now only scroll backward.

Defining the attribute section

The)ATTR (attribute) section of a panel contains the definitions for the special

characters or two-digit hexadecimal codes that are to be used in the definition of

the body of the panel to represent attribute (start-of-field/end-of-field) bytes. When

the panel is displayed, these characters are replaced with the appropriate hardware

attribute bytes and appear on the screen as blanks. If you do not define attribute

characters, ISPF uses defaults.

 Command ===>

 Patient name CECILIA COFRANCESCO

 More: +

 Personal information

 Address 2825 N. OCEAN BOULEVARD

 City, State BOCA RATON, FL

 Zip Code 33432

 Birth date 00/00/00

 Sex F (M=Male or F=Female)

 Marital Status . . . 1 1. Married

 2. Single

 3. Divorced

 4. Widowed

 Home phone (407)395-9446

 Work phone (407)982-6449

 Please fill in all information.

Figure 54. Scrollable area screen display (part 1 of 2)

 Command ===>

 Patient name CECILIA COFRANCESCO

 More: - +

 Home phone (407)395-9446

 Work phone (407)982-6449

 Emergency Contact

 Name PAULO COFRANCESCO

 Home phone (407)395-9446

 Work phone (407)982-6449

 Insurance Coverage

 Insurance Company . . BLUE CROSS BLUE SHIELD

 Group number 22

 ID number 45463

 Cardholder’s name . . CECILIA COFRANCESCO

 Relationship 1 1. Self

 2. Spouse

 Please fill in all information.

Figure 55. Scrollable area screen display (part 2 of 2)

)AREA Section

172 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

If specified, the attribute section precedes the panel body. It begins with the)ATTR

header statement.

)ATTR [DEFAULT(def1def2def3)]

[FORMAT(EBCDIC|DBCS|MIX)]

[OUTLINE([L][R][O][U]|BOX|NONE)]

where:

DEFAULT(def1def2def3)

You can use the DEFAULT keyword to specify the characters that define a

high-intensity text field, a low-intensity text field, and a high-intensity input

field, respectively. The value inside the parentheses must consist of exactly

three characters, not enclosed in single quotes and not separated by commas or

blanks.

 The DEFAULT keyword can also be specified on the)BODY header statement.

FORMAT(EBCDIC|DBCS|MIX)

The default value for a TYPE(INPUT) and a TYPE(DATAIN) field is

FORMAT(EBCDIC). These two default values can be changed by using the

)ATTR statement or the)BODY statement. These values, in turn, can be

overridden if explicitly specified on a subsequent statement. For example, the

net result of these two statements is FORMAT(DBCS):

)ATTR FORMAT(MIX)

 $ TYPE(INPUT) FORMAT(DBCS)

OUTLINE([L][R][O][U]|BOX|NONE)

The default value for OUTLINE is NONE. The default value for TYPE(INPUT)

and TYPE(DATAIN) fields can be specified on the)ATTR or)BODY statement

and can be overridden by the OUTLINE keyword. For example:

)ATTR OUTLINE(U)

 @ TYPE(INPUT) OUTLINE(BOX)

The attribute section ends with the)BODY header statement. The number of lines

allowed in an)ATTR section depends upon the storage size available.

Using default attribute characters

If not specified explicitly with the DEFAULT keyword, the default attribute

characters are:

% (percent sign) — text (protected) field, high intensity

+ (plus sign) — text (protected) field, low intensity

_ (underscore) — input (unprotected) field, high intensity

These three defaults are the equivalent to specifying:

)ATTR

 % TYPE(TEXT) INTENS(HIGH)

 + TYPE(TEXT) INTENS(LOW)

 _ TYPE(INPUT) INTENS(HIGH)

The default values for the JUST (justification) and CAPS (uppercase and lowercase)

keywords vary according to how the field is used. JUST and CAPS are attribute

statement keywords that are described in “Formatting attribute section statements”

on page 174.

You can change the default characters by using a keyword on either the)ATTR or

)BODY header statement. For example:

DEFAULT(abc)

)ATTR Section

Chapter 7. Panel definition statement reference 173

where a, b, and c are the three characters that take the place of %, +, and _,

respectively.

Typically, you use the DEFAULT keyword on the)ATTR header statement if the 3

default characters are to be changed, and additional attribute characters are also to

be defined. For example:

)ATTR DEFAULT($ø_)

 ¬ TYPE(INPUT) INTENS(NON)

 # TYPE(OUTPUT) INTENS(LOW) JUST(RIGHT) PAD(0)

In this example, the default characters for text fields are changed to $ for high

intensity, and ø for low intensity. The default character for high-intensity input

fields is _, the same as the ISPF-supplied default. The example defines two

additional attribute characters: ¬ for nondisplay input fields and # for low-intensity

output fields. The output fields are to be right-justified and padded with zeros.

You could use DEFAULT on the)BODY header statement, with the entire attribute

section omitted, if the only change is to redefine the default characters. For

example:

)BODY DEFAULT($ø_)

If you use DEFAULT on both the)ATTR and the)BODY header statements, the

)BODY specification takes precedence.

Formatting attribute section statements

Each attribute statement defines the attribute character for a particular kind of

field. You can define a given attribute character only once. The remainder of the

statement contains keyword parameters that define the nature of the field.

Generally, you should choose special (non-alphanumeric) characters for attribute

characters so that they will not conflict with the panel text. An ampersand (&),

blank (hexadecimal 40), shift-out (hexadecimal 0E), shift-in (hexadecimal 0F), or

null (hexadecimal 00) cannot be used as an attribute character.

Notes:

1. You can specify a maximum of 127 attribute characters. This limit includes the

3 default characters, attribute overrides, and TBDISPL dual defaults. For action

bar panels or panels with scrollable areas, you can specify a maximum of 110

attribute characters. This is because ISPF uses some attribute characters

internally.

2. For the attribute keywords AREA, EXTEND, SCROLL, and REP, the keyword

value must be expressed as a literal.

3. For other attribute keywords the value can be expressed as a literal, or as a

dialog variable name preceded by an ampersand (&). For example:

INTENS(&A)

4. Variable substitution is done after the)INIT section has been processed. The

current value of the dialog variable must be valid for the particular keyword.

For example, if the CAPS keyword is specified as CAPS(&B), the value of

dialog variable B must be ON, OFF, IN, or OUT.

)ATTR Section

174 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

attrchar

[AREA(DYNAMIC) [EXTEND(ON|OFF)][SCROLL(ON|OFF)]]

[USERMOD(usermod-code)]

[DATAMOD(datamod-code)]

[AREA(GRAPHIC) [EXTEND(ON|OFF)]]

[AREA(SCRL) [EXTEND(ON|OFF)]]

[ATTN(ON|OFF)]

[CAPS(ON|OFF|IN|OUT]

[CKBOX(ON|OFF)]

[COLOR(value)]

[CSRGRP(x)]

[COMBO(ON|OFF|name)]

[CUADYN(value)]

[DDLIST(ON|OFF|name)]

[DEPTH(d)]

[FORMAT(EBCDIC|DBCS|MIX)]

[HILITE(value)]

[GE(ON|OFF)]

[INTENS(HIGH|LOW|NON)]

[JUST(LEFT|RIGHT|ASIS)]

[LISTBOX(ON|OFF|name)]

[NOJUMP(ON|OFF)]

[NUMERIC(ON|OFF)]

[OUTLINE([L][R][O] [U]|BOX|NONE)]

[PAD(char|NULLS|USER)]

[PADC(char|NULLS|USER)]

[PAS(ON|OFF)]

[RADIO(ON|OFF)]

[REP(char)]

[SKIP(ON|OFF)]

[TYPE(value)]

[UNAVAIL(ON|OFF)]

[WIDTH(w)]

where:

attrchar

The single-character or two-digit hexadecimal code that is assigned to the

attributes that follow.

AREA(DYNAMIC) EXTEND(ON|OFF) SCROLL(ON|OFF) USERMOD(usermod-
code) DATAMOD(datamod-code)

The value in attrchar specifies the special character or two-position hexadecimal

value that is used to define the dynamic area within the panel body section. In

the panel body section, the name immediately following this character

identifies the dialog variable that contains the dynamically formatted string to

be displayed in the area. Subsequent lines of the dynamic area are defined in

the panel body by placing this character in the starting and ending columns of

the dynamic area. Except on the first line of the dynamic area, where the area

name immediately follows the left delimiter character, at least one blank must

follow the delimiter characters on the left side of the dynamic area. This is a

special character, not an actual attribute character. Other fields must not be

defined within or overlapping a DYNAMIC area.

EXTEND(ON|OFF)

Specifies whether the depth of an area can be automatically increased.

ON Specifies that the depth (number of lines) of an area can be

automatically increased, if required, so that the depth of the entire

body of the panel matches the depth of the physical screen on

which it is being displayed. Accordingly, an extendable area can be

designated in the panel definition by a single line unless text or

)ATTR Section

Chapter 7. Panel definition statement reference 175

other fields are to appear along the graphic area. Only one

extendable area can be specified in a panel definition.

Note: Using EXTEND(ON) is not recommended if your dynamic

area is displayed in a pop-up. When EXTEND(ON) is used,

the panel is extended to the size of the logical screen. If the

panel is then displayed in a pop-up, the panel may be

truncated at the pop-up border.

The value for the EXTEND keyword cannot be specified as a

dialog variable.

OFF The default. Specifies that the depth (number of lines) of an area

cannot be automatically increased.

SCROLL(ON|OFF)

Specifies whether the area can be treated as a scrollable area.

ON Specifies that the area can be treated as a scrollable area. When a

panel containing a scrollable area is displayed, the scrolling

commands are automatically enabled. Only one scrollable area can

be specified in a panel definition.

 The value for the SCROLL keyword cannot be specified as a dialog

variable.

 A panel cannot have more than one scrollable area or more than

one extended area.

 A panel displayed using TBDISPL cannot have a dynamic area

defined by SCROLL ON.

 Although the panel display service does not perform the scrolling,

it does provide an interpretation of the user’s scroll request.

OFF The default. Specifies that the area cannot be treated as a scrollable

area.

USERMOD(usermod-code) and DATAMOD(datamod-code)

Specifies a character or two-position hexadecimal value to be substituted

for attribute characters in a dynamic area variable following a user

interaction. The attribute characters used within the dynamic area are

intermixed with the data. These attribute characters designate the

beginning of a new data field within the area. When the dynamic area

variable is returned to the dialog, usermod-code and datamod-code are used to

replace the attribute character of each field that has been modified,

according to these rules:

v USERMOD specified but DATAMOD not specified

If there has been any user entry into the field, even if the field was

overtyped with identical characters, the attribute byte for that field is

replaced with usermod-code.

v DATAMOD specified but USERMOD not specified

If there has been any user entry into the field, and if the value in the

field has changed, either by the user entry or by ISPF capitalization or

justification, the attribute byte for that field is replaced with

datamod-code.

v Both USERMOD and DATAMOD specified If there has been any user

entry into the field but the value in the field has not changed, the

attribute byte for that field is replaced with usermod-code.

)ATTR Section

176 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

If there has been any user entry into the field and the value in the field

has changed, either by the user entry or by ISPF capitalization or

justification, then the attribute byte for that field is replaced with

datamod-code.

v Neither DATAMOD nor USERMOD specified

The attribute byte for the field is unchanged.

 You can specify more than one dynamic area on a panel. The number of

dynamic areas in a panel definition is limited only by physical space

limitations of the particular terminal being used for the display.

 Examples:

)ATTR

 # AREA(DYNAMIC) EXTEND(ON) USERMOD(!)

The character ’!’ replaces the attribute byte for each field in the dynamic area

that has been touched, not necessarily changed in value, by the user. All other

attribute bytes remain as they are.

)ATTR

 # AREA(DYNAMIC) EXTEND(ON) DATAMOD(01)

The hexadecimal code ’01’ replaces the attribute byte for each field in the

dynamic area that has been touched by the user and has changed in value. All

other attribute bytes remain as they are.

)ATTR

 # AREA(DYNAMIC) EXTEND(ON) USERMOD(0C) DATAMOD(03)

The hexadecimal code ’0C’ replaces the attribute byte for each field in the

dynamic area that has been touched by the user, but has not changed in value.

The hexadecimal code ’03’ replaces the attribute byte for each field in the

dynamic area that has been touched by the user and has changed in value. All

other attribute bytes remain as they are.

 If the datamod or usermod code is one of these special characters, it must be

enclosed in single quotes in the)ATTR section:

blank < (+ |) ; ¬ - , > : =

If the desired character is a single quote, use four single quotes:

DATAMOD(‘’‘’).

AREA(GRAPHIC) EXTEND(ON|OFF)

The value in attrchar specifies a character or two-digit hexadecimal value,

called the graphic attribute character, to be used to define the graphic area (4

corners) within the panel body. If you use a graphics area, this character must

be defined; there is no default value. A panel definition can contain only one

graphic area.

EXTEND(ON|OFF)

Specifies whether the depth of an area can be automatically increased.

ON Specifies that the depth (number of lines) of an area can be

automatically increased, if required, so that the depth of the entire

body of the panel matches the depth of the physical screen on

which it is being displayed. Accordingly, an extendable area can be

designated in the panel definition by a single line unless text or

other fields are to appear along the graphic area. Only one

extendable area can be specified in a panel definition.

)ATTR Section

Chapter 7. Panel definition statement reference 177

Note: Using EXTEND(ON) is not recommended if your graphic

area is displayed in a pop-up. When EXTEND(ON) is used,

the panel is extended to the size of the logical screen. If the

panel is then displayed in a pop-up, the panel may be

truncated at the pop-up border.

The value for the EXTEND keyword cannot be specified as a

dialog variable.

OFF The default. Specifies that the depth (number of lines) of an area

cannot be automatically increased.

 A graphic attribute character cannot have any other attribute properties. For

example, it cannot be mixed with attributes such as INTENS, CAPS, JUST, or

PAD.

 The graphic attribute character is used to define the boundaries of the graphic

area in the panel body, as follows:

v The graphic area is defined on the panel as a rectangle. The graphic attribute

character is used to define the 4 corners plus the remaining characters of the

vertical sides of this rectangle. You delineate the top and bottom of the

rectangle with the characters you use to complete the area outline on the

screen. For example, in Figure 56 on page 179, the 4 corners and vertical

sides are defined by the asterisk character in the)ATTR section. The top and

bottom of the area have been completed with dashes.

v A graphic area must be identified with a name that appears in the left top

corner, immediately following the first graphic attribute character of that

area. The name of the graphic area must be followed by a blank. This name

is used when retrieving information about the area through the PQUERY

dialog service or the LVLINE panel built-in function. The PQUERY service is

described in z/OS ISPF Services Guide.

v A graphic area can contain ISPF-defined alphanumeric fields.

v ISPF-defined alphanumeric fields can partially overlap graphic areas.

v The first line of the graphic area in the panel definition must have the

graphic attribute character in the starting and ending columns of the area. If

an alphanumeric field overlaps one of the subsequent lines of the graphic

area, it must be delimited by a graphic attribute character. See Figure 58 on

page 180 for an example.

v Any field preceding a graphic attribute character should be terminated by an

ISPF attribute character to prevent GDDM from overlaying the left-most

boundary characters of the area. When variable substitution occurs within a

text field in the panel body, the field must be terminated by an attribute

character before a special character defining a graphic area. “Using variables

and literal expressions in text fields” on page 115 provides additional

information about variable substitution in text fields.

v The width of the graphic area includes the graphic attribute character

positions.

v The PQUERY service and the LVLINE panel built-in function can be used to

obtain information about the size of the graphic area.

These rules are applied in Figure 56 on page 179.

)ATTR Section

178 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

In this example, a graphic area is defined. PICT1 is specified as the name of

the area. An asterisk (*) is the delimiter character for the vertical sides of the

area, and hyphens (-) are the delimiter character for the top and bottom. Note

that a blank follows the area name and follows all asterisks (*) other than the

asterisk adjacent to PICT1.

 Figure 57 and Figure 58 on page 180 are examples of panel definitions with a

graphic area. In Figure 58 on page 180, note that the alphanumeric field

INPUT1 starts at ’_’ and ends at ’|’.

)ATTR

 * AREA(GRAPHIC)

)BODY

%------------------- TITLE -------------------

%COMMAND ===>_ZCMD %

%

+ (Text or other fields that are part of the

+ normal panel body ...)

+

+ +*PICT1 ----------------------------*

 * *

 * *

 * *

 * *

 * *

 * *

 * ---------------------------------*

)END

Figure 56. Panel definition illustrating a graphic area

)ATTR

 * AREA(GRAPHIC)

)BODY

% MY COMPANY OPTION PANEL

% Your selection ==>_ZCMD +

+

+ 1 Our application 1 +*LOGO ----------------*

+ 2 Our application 2 +* *

+ 3 Our application 3 +* *

+ 4 Our application 4 +* *

+ 5 Our application 5 +* *

+ +* *

+ X Exit +* --------------------*

+ T Tutorial <--- Graphic Area --->

)END

Figure 57. Panel definition with graphic area

)ATTR Section

Chapter 7. Panel definition statement reference 179

AREA(SCRL) EXTEND(ON|OFF)

The value in attrchar specifies the special character or two-position hexadecimal

value that is used to define the borders of the scrollable area in the)BODY

section.

EXTEND(ON|OFF)

Specifies whether the depth of an area can be automatically increased.

ON Specifies that the depth (number of lines) of an area can be

automatically increased, if required, so that the depth of the entire

body of the panel matches the depth of the physical screen on

which it is being displayed. Accordingly, an extendable area can be

designated in the panel definition by a single line unless text or

other fields are to appear along the graphic area. Only one

extendable area can be specified in a panel definition.

Note: Using EXTEND(ON) is not recommended if your scrollable

area is displayed in a pop-up. When EXTEND(ON) is used,

the panel is extended to the size of the logical screen. If the

panel is then displayed in a pop-up, the panel may be

truncated at the pop-up border.

The value for the EXTEND keyword cannot be specified as a

dialog variable.

OFF The default. Specifies that the depth (number of lines) of an area

cannot be automatically increased.

ATTN(ON|OFF)

Defines the attention-select attribute of the field; it is valid only for text fields.

ON Specifies that the field can be selected by using the light pen or cursor

select key.

OFF The default. Specifies that the field cannot be selected in this manner.

Note: The panel designer must provide an adequate number of blank

characters before and after the attention attribute character, as required

by the 3270 hardware.

)ATTR

 | AREA(GRAPHIC)

)BODY

% Panel with Overlapping text field

%

% Here is the data as a graph and with editorial text:

+

 +|PIC1 ------------|

 | |

 | |

 | |

 | |

 _INPUT1 | |

 | |

 | ----------------|

% <- graphic area ->

)END

Figure 58. Definition of panel graphic area with overlapping text field

)ATTR Section

180 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

CAPS(ON|OFF|IN|OUT)

Specifies the uppercase or lowercase attribute of a field. CAPS is not valid for

text fields. The CAPS keyword can have any one of these values:

ON Data is translated to uppercase before being displayed and all input

fields are translated to uppercase before being stored.

OFF Data is displayed as it appears in the variable pool and all input fields

are stored as they appear on the screen.

IN Data is displayed as it appears in the variable pool, but all input fields

on the screen are translated to uppercase before being stored.

OUT Data is translated to uppercase before being displayed. All input fields

are stored as they appear on the screen.

 Unless you specify a CONTROL ASIS command procedure (CLIST)

statement, the use of CAPS(OFF), CAPS(IN), and CAPS(OUT) is

negated if the dialog variable is referred to in the command procedure.

 If you omit the CAPS parameter, the default is:

v CAPS(OFF) for input or output fields in the)MODEL section of a

table display panel

v CAPS(OFF) for DATAIN and DATAOUT fields in dynamic areas

v CAPS(ON) for all other input or output fields.

CKBOX(ON|OFF)

Allows a 1-character input field followed by a protected (text or output) field

to be processed as a check box in GUI mode. The input field is displayed as a

check box and the protected field is the check box description.

 The CKBOX keyword can have one of these values:

ON Process the input field as a check box.

OFF Process the input field as non-check box field. This is the default

setting.

 If the check box input field is not blank, the check box is initialized as selected

(checked). If the check box is selected, a slash character (/) is placed in the

check box input field when the panel is processed.

 The CKBOX keyword is ignored if the input field is greater than one character,

or if the field following the check box field is not a protected field. An error

message is issued if the CKBOX keyword is used on any fields other than

input fields, or the selected choice (SC) output field.

)ATTR Section

Chapter 7. Panel definition statement reference 181

COLOR(value)

For 3279-B terminals (or other ISPF-supported seven-color terminals), the

COLOR keyword defines the color of a field. The value can be: WHITE, RED,

BLUE, GREEN, PINK, YELLOW, or TURQ (turquoise). If a color has not been

specified and the panel is displayed on a terminal, a default color is generated

based on the protection (TYPE) and intensity attributes of the field. Table 8

shows which defaults are the same as the hardware-generated colors for

3279-A (or other ISPF-supported four-color terminals).

 Table 8. Color defaults

Field Type Intensity Default Color

Text/Output HIGH WHITE

Text/Output LOW BLUE

Input HIGH RED

Input LOW GREEN

If a color has been specified and the panel is displayed on a terminal other

than one with features such as those on the 3279-B, then:

v If an explicit intensity has also been specified for the field, the color

specification is ignored. For example:

)ATTR

 @ TYPE(INPUT) INTENS(HIGH) COLOR(YELLOW)

In this example, COLOR(YELLOW) is ignored except on terminals like the

3279-B. On a 3279-A terminal, for example, the resulting color is red.

v If an explicit intensity has not been specified for the field, the color is used

to generate a default intensity. Specification of blue, green, or turquoise

defaults to low intensity. Specification of red, yellow, pink, or white defaults

to high intensity. For example:

)ATTR

 $ TYPE(OUTPUT) COLOR(GREEN)

In this example, a low-intensity output field results.

v If neither color nor intensity has been specified for a field, the default

intensity is HIGH.

)ATTR

@ TYPE(CEF) CKBOX(ON)

$ TYPE(SAC)

)BODY

% -------- CHECK BOX PANEL ---------- +

+ Select options:

 &INSTR+

 @Z$Check box #1 description+

 @Z$Check box #2 description+

 @Z$Check box #3 description+

 @Z$Check box #4 description+

)INIT

 .ZVARS = ’(BOX1 BOX2 BOX3 BOX4)’

 IF (&ZGUI = ’ ’)

 &INSTR = ’Enter ’/’’ to select option.’

 ELSE

 &INSTR = ’Check box to select option.’

)END

Figure 59. Example of CKBOX keyword

)ATTR Section

182 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Note: You can make global changes to one or more of the ISPF-supported

colors by using the COLOR command or by selecting the Global Color

Change choice from the Colors pull-down on the ISPF Settings panel

(Option 0). You can control the colors when you are in GUI mode. See

the z/OS ISPF User’s Guide Vol II for more information.

COMBO(ON|OFF|name)

Enables you to define choices for a combination box in GUI mode. This

keyword is used in conjunction with the)LIST section. See “Defining the LIST

section” on page 223 for more information about the)LIST section.

 The COMBO attribute keyword is valid on input type fields only. The

combination box combines the functions of an entry field and a drop-down list

(see “DDLIST Keyword” on page 184). It has an entry field and contains a list

of choices that you can scroll through to select from to complete the entry

field. The list of choices is hidden until you take an action to make the list

visible. As an alternative, you can type text directly into the entry field. The

typed text does not need to match one of the choices in the list.

 The width of the input field determines the width of the combination box. If a

COMBOBOX field is immediately followed by three or more consecutive

attributes, the COMBOBOX will be displayed for the entire length of the field,

since the three attributes allow space for the COMBOBOX button without

overlaying data in the next field. If a COMBOBOX field is not followed by

three or more consecutive attributes, the COMBOBOX will be displayed for the

length of the field, to avoid overlaying data in the next field, but the

COMBOBOX field will scroll to the right so that the user will be able to type in

more than enough data to fill the field.

 On the host, the application must be made to implement this function. One

method to do this is to code the input field with a field-level help panel

containing a scrollable list of choices.

 The COMBO keyword can have one of these values:

ON Specifies an input field is to display as a combination box when

running in GUI mode.

OFF Specifies an input field is NOT to display as a combination box when

running in GUI mode. This is the default setting.

name Specifies a name that is matched with the)LIST section name

parameter (see “Defining the LIST section” on page 223). This name is

valid only on a CEF or other input type field. The name is composed

of 1 to 8 characters. Alphanumeric characters A-Z, a-z, 0-9, #, $, or @

can be used in the name, but the first character cannot be numeric.

Lowercase characters are converted into uppercase equivalents.

Note: The COMBO keyword is supported for any input field type. To keep the

discussion simple, CEF is used to mean any input field type, and SAC is

used to mean any text or output field type.

 The COMBO keyword must be used in conjunction with the CSRGRP(x)

keyword. The CSRGRP(x) keyword must appear on the CEF field that is used

to enter the selection on the host, and on the SAC field that identifies the

choices in the list. The x value is a number that ties the choices to the correct

input field, which has the same COMBO keyword and CSRGRP(x) number.

 To specify the attributes of a combination box, use this syntax:

attribute-char TYPE(input) COMBO(ON|OFF|name) CSRGRP(x) DEPTH(d)

)ATTR Section

Chapter 7. Panel definition statement reference 183

where attribute-char is the special character or 2-position hexadecimal value that

is used to define the field within the panel body section. The x in CSRGRP(x)

can be a number between 1 and 99. The number is used to group all of the

fields with the same value into cursor groups.

 The TYPE value must be an input type field. The DEPTH(d) sets the number

of rows for the combination box. Values can be from 0 to 99. For example, if

you specify DEPTH(8), the combination box contains eight rows of data. If the

depth specified is 0, or if the depth is not specified, the default depth is 4.

CSRGRP(x)

Enables you to determine which pushbuttons and checkbox fields are grouped

together for cursor movement purposes. When pushbuttons or checkboxes are

grouped into cursor groups, the cursor up and down keys move the focus

through each of the fields within the group. The TAB key moves the focus out

of the group, to the next field that is not within this particular group.

 To specify the CSRGRP(x) keyword for cursor groups use this syntax:

attribute-char TYPE(PS) CSRGRP(x)

attribute-char TYPE(OUTPUT) PAS(ON) CSRGRP(x)

attribute-char TYPE(CEF) CKBOX(ON) CSRGRP(x)

where attribute-char is the special character or 2-position hexadecimal value that

is used to define the field within the panel body section. The x in CSRGRP(x)

can be a number between 1 and 99. The number is used to group all of the

fields with the same value into cursor groups. If you specify a CSRGRP on a

field that is not displayed as a pushbutton, a checkbox, a radio button, list box,

combination box, or drop-down list, then the CSRGRP keyword is ignored.

 All pushbuttons and checkbox fields that do not have a CSRGRP defined do

not have a cursor group set in GUI mode, which has the same effect as having

them all in the same cursor group.

CUADYN(value)

Enables you to define dynamic area DATAIN and DATAOUT attributes with

CUA attribute characteristics. For more information, see “Specifying dynamic

areas” on page 202.

DDLIST(ON|OFF|name)

Enables you to define choices for a single choice selection list and display the

list in a drop-down box in GUI mode. A drop-down list is a variation of a list

box (see “LISTBOX Keyword” on page 190). A drop-down list initially displays

only one item until you take action to display the rest of the items in the list.

 The DDLIST keyword can have one of these values:

ON Specifies a single selection list to display as a drop-down list when

running in GUI mode.

OFF Specifies a single selection list is NOT to display as a drop-down list

when running in GUI mode. This is the default setting.

name Specifies a name that is matched with the)LIST section name

parameter (see “Defining the LIST section” on page 223). This name is

valid only on a CEF or other input type field. The name is composed

of 1-8 characters. Alphanumeric characters A-Z, a-z, 0-9, #, $, or @ can

be used in the name, but the first character cannot be numeric.

Lowercase characters are converted into uppercase equivalents.

)ATTR Section

184 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Note: To keep the discussion simple, CEF is used to mean any input field

type, and SAC is used to mean any protected text or output type.

 The DDLIST keyword must be used in conjunction with the CSRGRP(x)

keyword (see ″CSRGRP(x)″). The CSRGRP(x) keyword must appear on the CEF

field that is used to enter the selection on the host, and on the SAC field that

identifies the choices in the list. The x value is a number that ties the choices to

the correct input field, which has the same DDLIST keyword and CSRGRP(x)

number.

 Defining a DDLIST Without a)LIST Section

 To define a drop-down list using just the attribute keywords DDLIST and

CSRGRP, define the drop-down list by coding the DDLIST(ON) keyword on

the CEF field and on the SAC field that identifies the choices that go with the

CEF field. The SAC choice fields that have the same keyword settings (DDLIST

and CSRGRP) as the CEF field are used to build the list of choices in the list.

They are not built into the panel body when the panel is displayed. The fields

following the SAC fields should be text or output fields, they are used as the

list choice text. If a field following an SAC field is not a text or output field, no

entry is built in the list for that field. The data in the drop-down list is

displayed in the order that ISPF processes the defined panel body, that is, left

to right, and top to bottom.

 ISPF initially compares the CEF field with each SAC field for the drop-down

list. If a CEF and SAC match is found the drop-down list field is set to the

matching SAC choice text field. If no match is found, or if the CEF field is

blank, the drop-down list field is set to blank.

 To specify the attributes of a drop-down list use this syntax in the)ATTR

section:

attr-char TYPE(CEF) DDLIST(ON) CSRGRP(x) WIDTH(w) DEPTH(d)

attr-char TYPE(SAC) DDLIST(ON) CSRGRP(x)

Where attr-char is the special character or 2-position hexadecimal value used to

define the choice entry field, or the SAC field within the panel body section.

The other variables listed in the example are:

WIDTH(w)

The value of w sets the width of the drop-down list. Values can be

from 0 to 99. This parameter is only used when it is specified on a CEF

field. If you specify a width, ISPF makes the drop-down list that is

displayed the specified width. If you do not specify, or specify a width

of zero, ISPF scans the next field that is not one of the choice numbers

or choice text fields for the CEF field to determine the available space

for the list. In this case, ISPF sets the width to the smaller value

between the available space and the length of the longest choice text

string.

 This value does not include the DDLIST borders. If you specify

WIDTH(5), the DDLIST can contain 5 characters of data. The width

you specify should be large enough to hold the longest choice text

string. Also ensure that there is enough panel space for it to fit without

overlaying other fields on the panel.

)ATTR Section

Chapter 7. Panel definition statement reference 185

Note: Ensure that, from the starting position of the drop-down list, the

width that you specify does not extend past the right border of

the panel.

DEPTH(d)

The value of d sets the number of rows for the list to display. Values

can be from 0 to 99. This parameter is only used when it is specified

on a CEF field. If you specify a depth, ISPF makes the drop-down list

that is displayed the specified depth.

 If you specify DEPTH(8), the DDLIST can contain 8 lines of data. If the

depth specified is 0, or if the depth is not specified, the default depth

is 4.

 Example Panel Definition for DDLIST

)ATTR

@ TYPE(CEF) DDLIST(ON) CSRGRP(1)

$ TYPE(SAC) DDLIST(ON) CSRGRP(1)

TYPE(SAC)

)BODY

%-------------------Sample List Panel---------------------------------

+Terminal Characteristics:

 +Screen format

 @Z $1.#Data+ $3.#Max+

 $2.#STD+ $4.#Part+

)END

Defining a DDLIST With a)LIST Section

 Another way to define a DDLIST is to build the choices into the)LIST section

of the panel. See “Defining the LIST section” on page 223 for more information

about the LIST section.

 To specify the attributes of a drop-down list use this syntax:

)ATTR

 attr-char TYPE(CEF) DDLIST(name) CSRGRP(x) WIDTH(w) DEPTH(d)

 attr-char TYPE(SAC) DDLIST(ON) CSRGRP(x) ...
)LIST name

 VAL(value1) CHOICE(choice1)

 VAL(value2) CHOICE(choice2)

Where the DDLIST(name) on the CEF field in the)ATTR section matches the

name on the)LIST statement. The)LIST section contains the list of choices and

the values for the drop-down list. The data in the drop-down list is displayed

in the order in which you define the choices in the)LIST section.

 If the choices are also built into the panel body, the SAC attribute must have

DDLIST(ON) so that ISPF does not display the choices in the panel body, but

uses the choices specified in the)LIST section.

 ISPF initially compares the CEF field with each VAL(value) in the named)LIST

section. If a CEF and VAL match is found the drop-down list field is set to the

matching VAL’s choice text. If no match is found, or if the CEF field is blank,

the drop-down list field is set to blank.

)ATTR Section

186 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Note: Defining drop-down lists is not a trivial task. You might find it simpler

to use Dialog Tag Language to define panels that contain drop-down

lists. See z/OS ISPF Dialog Tag Language Guide and Reference for more

information.

When you define drop-down lists, keep these points in mind:

v The CEF field (or other input field) receives the selection number and the

SAC field (or other output or text field) that contains the selection number.

The SAC field must be followed by another output or text field with the

choice description to be placed in the list.

v The CEF field should not be more than 3 characters long. Only 3 characters

are checked and set for CEF fields processed as drop-down lists.

v If the text following the SAC attribute is longer than 3 characters or the CEF

field, then the text is truncated to the size of the CEF field, or 3 characters

(whichever is smaller when that list choice is selected). Periods at the end of

the string are ignored, they are not set into the list entry field with the other

text when the choice is selected and the panel is processed.

v If a CEF field has the same CSRGRP value as a previous CEF field, and both

of them have the same DDLIST(ON) keyword, then the second CEF field is

displayed as an input field and all of the choices with the same keywords

are grouped under the first CEF field.

v If a CEF field has a DDLIST(ON) and a CSRGRP value that does not match

an SAC field with DDLIST(ON) and a CSRGRP value that comes after it,

then the CEF field is displayed as an input field.

v If an SAC field has a DDLIST(ON) and a CSRGRP value that does not match

a previous CEF field with DDLIST(ON) and a CSRGRP value, then the SAC

field and the description following it do not display.

v If an SAC field is not followed by an output or text field to be used as the

list choice text, then the SAC field is not displayed, and there is no entry in

the list for that choice.

DEPTH(d)

The value of d sets the number of rows for a list box, drop-down list, or

combination box to display. Values can be from 0 to 99. This parameter is only

used when it is specified on an input field. See the appropriate sections on list

boxes, drop-down lists, and combination boxes for more information.

FORMAT(EBCDIC|DBCS|MIX)

For DBCS terminals, the FORMAT keyword specifies the character format for a

field.

EBCDIC EBCDIC characters only

DBCS DBCS characters only

MIX EBCDIC and DBCS characters

In a FORMAT(MIX) field, any DBCS character string must be enclosed by a

shift-out (hexadecimal 0E) and a shift-in (hexadecimal 0F).

 The default value for a TYPE(INPUT) and a TYPE(DATAIN) field is

FORMAT(EBCDIC). These two default values can be changed by using the

)ATTR statement or the)BODY statement. These values, in turn, can be

overridden if explicitly specified on a subsequent statement. For example, the

net result of these two statements is FORMAT(DBCS):

)ATTR FORMAT(MIX) $ TYPE(INPUT) FORMAT(DBCS)

)ATTR Section

Chapter 7. Panel definition statement reference 187

The default value for a TYPE(TEXT) and a TYPE(OUTPUT) field is

FORMAT(MIX). The format of a TYPE(TEXT) field cannot be overridden by the

execution of an .ATTR or .ATTRCHAR statement. Attempting to do so results

in a dialog error.

 The pad character for a DBCS field is converted to the corresponding 16-bit

character and is then used for padding. Other format fields are padded

normally.

 The CAPS attribute is meaningful only for EBCDIC and MIX fields. In

addition, within a MIX field, the CAPS attribute applies only to the EBCDIC

subfields.

GE(ON|OFF)

The GE keyword indicates that a specific character attribute should be

preceded in the order stream by the graphic escape order, provided the

terminal supports GE order. The GE order indicates that the character comes

from the APL/TEXT character set. This keyword is supported on TYPE(CHAR)

within a Dynamic Area, action bar separator lines (TYPE(ABSL)), work area

separator lines (TYPE(WASL)), and column headings (TYPE(CH)).

 The GE keyword can have one of these values:

ON Specifies that ISPF will place a graphic escape order before the

attribute character when building the order stream.

OFF The default. Specifies that ISPF will not place a graphic escape order

before the attribute character.

 If GE(ON) is specified on TYPE(ABSL), TYPE(WASL), or TYPE(CH), and if the

characters following these TYPE’s in the panel definition are dashes (-) or

vertical bars (|), then the appropriate APL character will be used. This results

in these panel elements displaying as solid horizontal or vertical lines, instead

of broken lines.

Note: If the terminal does not support graphic escape or if you are running

under GDDM (i.e., GRINIT service has been issued) then these panel

elements will be displayed as coded in the panel definition.

For more information about the GE keyword support on TYPE(CHAR) within

a dynamic area, see “Specifying character attributes in a dynamic area” on

page 148.

HILITE(value)

For ISPF-supported terminals with the extended highlighting feature, the

HILITE keyword defines the extended highlighting attribute for a field. The

value can be:

USCORE Underscore

BLINK Blinking

REVERSE Reverse video

No default is assumed if highlighting is not specified. When you are running

in GUI mode, the HILITE keyword is ignored.

 If highlighting is specified and the panel is displayed on a terminal without

the extended highlighting feature, then:

v If an explicit intensity has also been specified, the highlighting is ignored.

)ATTR Section

188 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

v If an explicit intensity has not been specified for the field, a high-intensity

field results. On a 3279-A terminal, there is also color provided by default, as

described in Table 8 on page 182.

Examples of Using COLOR and HILITE Keywords

@ TYPE(OUTPUT) INTENS(HIGH) COLOR(YELLOW) HILITE(BLINK)

the results are as follows:

3277,8 — TYPE(OUTPUT) INTENS(HIGH)

3279-A — TYPE(OUTPUT) INTENS(HIGH) *

3279-B — TYPE(OUTPUT) COLOR(YELLOW) HILITE(BLINK)

3290 — TYPE(OUTPUT) HILITE(BLINK)

* Results in white.

INTENS(HIGH|LOW|NON)

Specifies the intensity of the field (HIGH is the default):

HIGH High-intensity field

LOW Low-intensity (normal) field

NON Nondisplay field

You can specify these operands for the basic attribute types

(TEXT|INPUT|OUTPUT). NEF is the only CUA panel-element type that

supports the INTENS(NON) operand. The remaining CUA panel-element types

do not allow the COLOR, INTENS, and HILITE keyword default values to be

changed. The NON operand allows you to optionally display comments or

directive lines.

 For a panel displayed on a color terminal, you can also use the INTENS

keyword to generate a default color for the field, as described for the COLOR

keyword. INTENS(HIGH) and INTENS(LOW) are ignored for a 3290 terminal

and in GUI mode.

JUST(LEFT|RIGHT|ASIS)

Specifies how the contents of the field are to be justified when displayed. JUST

is valid only for input and output fields.

LEFT Left justification

RIGHT Right justification

ASIS No justification

Justification occurs if the initial value of a field is shorter than the length of the

field as described in the panel body. Normally, right justification should be

used only with output fields, since a right-justified input field would be

difficult to type over.

 For LEFT or RIGHT, the justification applies only to how the field appears on

the screen. Leading blanks are automatically deleted when the field is

processed. For ASIS, leading blanks are not deleted when the field is

processed, nor when it is initialized. Trailing blanks are automatically deleted

when a field is processed, regardless of its justification.

 If you omit the JUST parameter, the default is:

v JUST(ASIS) for input or output fields in the)MODEL section of a table

display panel

v JUST(ASIS) for DATAIN and DATAOUT fields in dynamic areas

v JUST(LEFT) for all other input or output fields.

)ATTR Section

Chapter 7. Panel definition statement reference 189

LISTBOX(ON|OFF|name)

Enables you to define choices for a single choice selection list and display the

list in a list box in GUI mode. A list box displays a scrollable list of choices in a

box on the display.

 The LISTBOX keyword can have one of these values:

ON Specifies a single selection list to display as a list box when running in

GUI mode.

OFF Specifies a single selection list is NOT to display as a list box when

running in GUI mode. This is the default setting.

name Specifies a name that is matched with the)LIST section name

parameter (see “Defining the LIST section” on page 223). This name is

valid only on a CEF or other input type field. The name can be 1 to 8

characters long. Alphanumeric characters A-Z, a-z, 0-9, #, $, or @ can

be used in the name, but the first character cannot be numeric.

Lowercase characters are converted into uppercase equivalents.

Note: To keep the discussion simple, CEF is used to mean any input field

type, and SAC is used to mean any protected text or output type.

The LISTBOX keyword must be used with the CSRGRP(x) keyword (see 184).

The CSRGRP(x) keyword must appear on the CEF field that is used to enter

the selection on the host, and on the SAC field that identifies the choices in the

list. The x value is a number that ties the choices to the correct input field,

which has the same LISTBOX keyword and CSRGRP(x) number.

 Defining a LISTBOX Without a)LIST Section

 Define the list box by coding the LISTBOX(ON) keyword on the CEF field and

on the SAC field that identifies the choices that go with the CEF field. The

SAC choice fields that have the same keyword settings (LISTBOX and

CSRGRP) as the CEF field are used to build the list of choices in the list. They

are not built into the panel body when the panel is displayed. The fields

following the SAC fields should be text or output fields, they are used as the

list choice text. If a field following an SAC field is not a text or output field, no

entry is built in the list for that field.

 To specify the attributes of a list box use this syntax in the)ATTR section:

attr-char TYPE(CEF) LISTBOX(ON) CSRGRP(x) WIDTH(w) DEPTH(d)

attr-char TYPE(SAC) LISTBOX(ON) CSRGRP(x)

Where attr-char is the special character or 2-position hexadecimal value used to

define the choice entry field, or the SAC field within the panel body section.

The other variables listed in the example are:

WIDTH(w)

The value of w sets the width of the list box. Values can be from 0 to

99. This parameter is only used when it is specified on a CEF field. If

you specify a width, ISPF makes the list box that is displayed the

specified width. If you do not specify, or specify a width of zero, ISPF

scans the next field that is not one of the choice numbers or choice text

fields for the CEF field to determine the available space for the list. In

this case, ISPF sets the width to the smaller value between the

available space and the length of the longest choice text string.

 This value does not include the LISTBOX borders. If you specify

WIDTH(5), the LISTBOX can contain 5 characters of data.

)ATTR Section

190 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

DEPTH(d)

The value of d sets the number of rows for the list to display. Values

can be from 0 to 99. This parameter is only used when it is specified

on a CEF field. If you specify a depth, ISPF makes the list box that is

displayed the specified depth. If the depth specified is 0, or if the

depth is not specified, the default depth is 4.

 This value does not include the horizontal scroll bar. If you specify

DEPTH(8), the list box can contain 8 lines of data.

Note: Ensure that from the starting position of the List Box, the width

specified does not extend past the right border of the panel.

Also ensure that from the starting position of the List Box, the

depth specified does not extend past the bottom edge of the

panel.

 Example Panel Definition for LISTBOX

)ATTR

@ TYPE(CEF) LISTBOX(ON) CSRGRP(1) DEPTH(4)

$ TYPE(SAC) LISTBOX(ON) CSRGRP(1)

TYPE(SAC)

)BODY

%-------------------Sample List Panel---------------------------------

+Terminal Characteristics:

 +Terminal Type

 @Z $1.#3277+ $5.#3290A+

 $2.#3277A+ $6.#3278T+

 $3.#3278+ $7.#3278CF+

 $4.#3278A+ $8.#3277KN+

)END

Defining a LISTBOX With a)LIST Section

 Another way to define a LISTBOX is to build the choices into the)LIST section

of the panel. See “Defining the LIST section” on page 223 for more information

about the LIST section.

 To specify the attributes of a list box use this syntax:

)ATTR

 attr-char TYPE(CEF) LISTBOX(name) CSRGRP(x) WIDTH(w) DEPTH(d)

 attr-char TYPE(SAC) LISTBOX(ON) CSRGRP(x) ...
)LIST name

 VAL(value1) CHOICE(choice1)

 VAL(value2) CHOICE(choice2)

Where the LISTBOX(name) on the CEF field in the)ATTR section matches the

name on the)LIST statement. The)LIST section contains the list of choices and

the values for the drop-down list. The data in the drop-down list is displayed

in the order in which you define the choices in the)LIST section.

 If the choices are also built into the panel body, the SAC attribute must have

LISTBOX(ON) so that ISPF does not display the choices in the panel body, but

uses the choices specified in the)LIST section.

)ATTR Section

Chapter 7. Panel definition statement reference 191

Note: Defining list box lists is not a trivial task. You might find it simpler to

use Dialog Tag Language to define panels that contain list box lists. See

z/OS ISPF Dialog Tag Language Guide and Reference for more information.

When you define listboxes, keep these points in mind:

v The CEF field (or other input field) receives the selection number and the

SAC field (or other output or text field) that contains the selection number.

The SAC field must be followed by another output or text field with the

choice description to be placed in the list.

v The CEF field should not be more than 3 characters long. Only 3 characters

are checked and set for CEF fields processed as drop-down lists.

v If the text following the SAC attribute is longer than 3 characters or the CEF

field, then the text is truncated to the size of the CEF field, or 3 characters

(whichever is smaller when that list choice is selected). Periods at the end of

the string are ignored, they are not set into the list entry field with the other

text when the choice is selected and the panel is processed.

v If a CEF field has the same CSRGRP value as a previous CEF field, and both

of them have the same LISTBOX(ON) keyword, then the second CEF field is

displayed as an input field and all of the choices with the same keywords

are grouped under the first CEF field.

v If a CEF field has a LISTBOX(ON) and a CSRGRP value that does not match

an SAC field with LISTBOX(ON) and a CSRGRP value that comes after it,

then the CEF field is displayed as an input field.

v If an SAC field has a LISTBOX(ON) and a CSRGRP value that does not

match a previous CEF field with LISTBOX(ON) and a CSRGRP value, then

the SAC field and the description following it do not display.

v If an SAC field is not followed by an output or text field to be used as the

list choice text, then the SAC field is not displayed, and there is no entry in

the list for that choice.

NOJUMP(ON|OFF)

Specifies whether the jump function is disabled for a specific input field. It is

ignored on text and output fields. NOJUMP(OFF), jump function enabled, is

the default for fields with field prompts of ==> and for fields with field

prompts of leader dots (. . or ...), provided that jump from leader dots is set to

YES in the Configuration table or ″jump from leader dots″ is selected in the

Settings panel.

ON Specifies that the jump function is disabled and the data entered is

passed to the dialog as it was entered.

OFF Specifies that the jump function is enabled for fields with field prompts

of ==> and for fields with field prompts of leader dots (. . or ...)

provided that ″jump from leader dots″ is set to YES in the

Configuration table or selected in the Settings panel. This is the

default.

Note: If the application developer defines the NOJUMP(ON) attribute

keyword on a specific input field, this disables the ″jump from leader

dots″ setting for that field, and takes precedence over the ″jump from

leader dots″ setting on the Settings panel or the Configuration setting of

YES for ″jump from leader dots″.

NUMERIC(ON|OFF)

For terminals with the Numeric Lock feature, the NUMERIC attribute keyword

)ATTR Section

192 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

allows users to be alerted to certain keying errors. The NUMERIC attribute

keyword is used to specify, for a panel field, whether Numeric Lock is to be

activated for data keyed into that field.

ON Specifies that the Numeric Lock feature is to be activated. The terminal

keyboard locks if the operator presses any key other than 0 through 9,

minus(-), period (.), or duplicate (DUP). ON is valid only for

unprotected fields.

OFF Specifies that the Numeric Lock feature is not to be activated. The user

can type in any characters. NUMERIC(OFF) is the default value.

On a data-entry keyboard with the Numeric Lock feature, when the user

moves the cursor into a field defined by the NUMERIC(ON) attribute

keyword, the display shifts to numeric mode. If the user presses any key other

than those allowed by the Numeric Lock feature, the DO NOT ENTER

message displays in the operator information area and the terminal is disabled.

The user can continue by pressing the reset key.

Note: On non-English keyboards with the Numeric Lock feature, the comma

sometimes replaces the period as a valid numeric character.

NUMERIC(ON) and SKIP(ON) attributes cannot be specified for the same

field. If attempted, ISPF issues an error message.

 The NUMERIC(ON) attribute is not supported when GDDM is active.

 When running in GUI mode, any panel field defined as NUMERIC(ON) is

verified at the workstation. That is, only numeric characters 0 through 9 and

special characters comma (,), dash (-), and period (.) are accepted in a numeric

only defined field.

OUTLINE([L][R][O][U]|BOX|NONE)

For DBCS terminals, the OUTLINE keyword lets you display lines around any

type of field. The keyword parameters specify where the line or lines are

displayed.

L Line to the left side of the field

R Line to the right side of the field

O Line over the field

U Line under the field

BOX Line surrounding the field (equivalent to LROU)

NONE No lines

You can specify any combination of the L, R, O, or U parameters in any order,

without intervening blanks.

 The default value for OUTLINE is NONE. The default value for TYPE(INPUT)

and TYPE(DATAIN) fields can be specified on the)ATTR or)BODY statement,

and can be overridden by the OUTLINE keyword. For example:

)ATTR OUTLINE(U)

 @ TYPE(INPUT) OUTLINE(BOX)

When you are running in GUI mode, the OUTLINE keyword is ignored.

PAD(char|NULLS|USER)

Specifies the pad character for initializing the field. This is not valid for text

fields. If PAD is omitted, the default is PAD(’ ’) for output fields.

char Any character, including blank (’ ’), can be specified as the

padding character. If the character is any of these, it must be

enclosed in single quotes:

)ATTR Section

Chapter 7. Panel definition statement reference 193

blank < (+) ; ¬ , > : =

If the desired pad character is a single quote, use four single

quotes: PAD(’’).

NULLS Nulls are used for padding.

USER Padding character is specified by a user through the ISPF

Settings panel.

If the field is initialized to blanks or the corresponding dialog variable is blank,

the entire field contains the pad character when the panel is first displayed. If

the field is initialized with a value, the remaining field positions, if any, contain

the pad character.

 Padding and justification work together as follows. At initialization, unless you

have specified ASIS, the field is justified and then padded. For left-justified

and ASIS fields, the padding extends to the right. For right-justified fields, the

padding extends to the left.

 When ISPF processes an input field, it automatically deletes leading or trailing

pad characters as follows:

v For a left-justified field, ISPF deletes leading and trailing pad characters.

v For a right-justified field, ISPF deletes leading pad characters and stores

trailing pad characters.

v For an ASIS field, ISPF deletes trailing pad characters and stores leading pad

characters.

Regardless of the type of justification, ISPF deletes leading and trailing pad

characters for command fields.

In no case does ISPF delete embedded pad characters. It deletes only leading

or trailing pad characters.

PADC(char|NULLS|USER)

Specifies conditional padding with the specified pad character. The pad

character is used as a field filler only if the value of the input or output field is

initially blank. The pad character is not displayed in the remaining unfilled

character positions if the field has an initial value. Instead, the unfilled

positions contain nulls. Otherwise, ISPF treats the PADC keyword like the PAD

keyword, including justification and deletion of pad characters before storing

variables in the pool.

char Any character, including blank (‘ ’), can be specified as the padding

character. If the character is any of these, it must be enclosed in single

quotes:

blank < (+) ; ¬ , > : =

If the desired pad character is a single quote, use four single quotes:

PAD(‘’‘’).

NULLS

Nulls are used for padding.

USER Specifies that a user-defined character be used for padding. You define

the character by using the ISPF Settings panel. PAD and PADC are

incompatible. It is not valid to specify both PAD and PADC for the

same attribute character.

If PADC is omitted, the default is PADC(USER) for input fields.

)ATTR Section

194 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

PAS(ON|OFF)

PAS is valid for input and output fields only (not for text fields). The

point-and-shoot keyword specifies the field as a point-and-shoot field. In GUI

mode, output fields specified as point-and-shoot fields are displayed as

buttons. The PAS keyword is used in conjunction with the)PNTS

point-and-shoot panel section. See “Defining the point-and-shoot section” on

page 228 for more information.

 For each field on the panel that has been designated as a point-and-shoot field,

there must be a corresponding entry in the)PNTS point-and-shoot panel

section. If the cursor is placed on a point-and-shoot panel field and the Enter

key is pressed, the action associated with the field is performed. In the

example shown, if the cursor is placed on the point-and-shoot field, BLUE1,

and the Enter key is pressed, the variable RED1 is set to RED. In GUI mode,

the action is performed when the pushbutton point-and-shoot field is selected.

The cursor only remains positioned on the point-and-shoot field if no

intermediate panel is displayed and if the dialog does not set the cursor

position.

Note: You can use option 0 (Settings) to set the tab key to move the cursor

point-and-shoot fields. This changes output fields to input fields, but

data is not altered. However, if a variable is used on an output field that

is changed to an input field by the tab to point-and-shoot option, and

the variable is VDEFINEd to the application, the variable will be

truncated. In this case, the application developer should have a

temporary panel variable.

ON The field is a point-and-shoot field.

OFF The default. This field is not a point-and-shoot field.

 Example:

)PANEL

)ATTR

 $ TYPE(PIN)

 } TYPE(PS)

 + TYPE(NT)

 | AREA(SCRL) EXTEND(ON)

 ! TYPE(OUTPUT) PAS(ON) COLOR(RED)

 * TYPE(OUTPUT) PAS(ON) COLOR(BLUE)

 @ TYPE(TEXT) INTENS(LOW) COLOR(RED) PAD(NULLS)

 ø TYPE(TEXT) INTENS(LOW) COLOR(BLUE) PAD(NULLS)

)BODY WINDOW(60,23)

$

%COMMAND ===>_ZCMD

$

$ Press }DEFAULTS$to reinstate defaults

$

+

|S1 |

)AREA S1

+ +

+ +

+ øBLUE *BLUE1 +

+ @RED!RED1 +

)INIT

 .cursor = blue1

 &blue1 = ’ ’

)PROC

 REFRESH(*)

)ATTR Section

Chapter 7. Panel definition statement reference 195

)PNTS

 FIELD(BLUE1) VAR(RED1) VAL(RED)

 FIELD(ZPS00001) VAR(BLUE1) VAL(DEFAULT)

)END

RADIO(ON|OFF) CSRGRP(x)

Displays mutually exclusive textual settings choices. These fields must contain

at least two choices, one of which is usually selected. A single-choice selection

list is the equivalent function on the host. In GUI mode, they appear as radio

button groups.

 To have a single-choice selection list display as a radio button group, use the

RADIO(ON) keyword with the CSRGRP(x) keyword on the CEF type (or other

input type) field that is used to enter the selection on the host.

Note: The RADIO keyword is supported for any input, output, or text field

type. To keep the discussion simple, CEF is used to mean any input

field type, and SAC is used to mean any protected text or output type.

For a list of possible selections, attribute type SAC (select available choice) or

another text or output field type must be used before the choice selection

number. The attribute used for the choice selection number also must have the

RADIO(ON) keyword with the CSRGRP(x) keyword. The x on the CSRGRP

keyword is a number used to identify each radio button group. The CSRGRP

number on both the CEF type field and the SAC type field must match. (For

more information about CSRGRP, see 184.) The next field must be a text or

output field, used as the radio button choice text.

 ISPF initially sets the radio button in the group that corresponds to the value

in the CEF field. If the CEF field is blank or the value in the field does not

correspond with any of the radio button selections, then no radio button is set

by default. ISPF then uses the characters following the SAC attribute to set the

value into the CEF field with the same CSRGRP(x) number.

 The CEF field must be no more than 3 characters, because only 3 characters are

checked and set for the CEF fields processed as radio buttons. If the text

following the SAC attribute is longer than 3 characters, or longer than the

value in the CEF field, then the text is truncated to the size of the CEF field or

3 characters, whichever is smaller when the radio button corresponding to that

choice is selected. Periods at the end of the string are ignored.

 To specify the RADIO(ON/OFF) CSRGRP(xx) keyword for radio buttons, use

this syntax:

attribute-char TYPE(CEF) RADIO(ON/OFF) CSRGRP(x)

attribute-char TYPE(SAC) RADIO(ON/OFF) CSRGRP(x)

attribute-char

the special character or 2-position hexadecimal value used to define the

choice entry field, or the SAC field within the panel body section. The

radio button group is defined in the panel body section by using the

special character to define the radio button entry field and the radio

button choices that go with it.

TYPE(CEF)

field attribute overrides for the CEF fields can be used to set the

RADIO(ON) and CSRGRP(x) value for the CEF field.

TYPE(SAC)

or other text or output field type to be used before each of the choice

selection numbers.

)ATTR Section

196 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

RADIO(ON|OFF)

ON if the radio button is implemented, OFF if it is not.

CSRGRP(x)

x can be any number from 1 to 99. The number refers to the number of

the radio button group as a whole, not the individual choices with the

radio button group.

 For example:

)ATTR

@ TYPE(CEF) RADIO(ON) CSRGRP(1)

$ TYPE(SAC) RADIO(ON) CSRGRP(1)

! TYPE(CEF) RADIO(ON) CSRGRP(2)

 ̂ TYPE(SAC) RADIO(ON) CSRGRP(2)

#TYPE(SAC)

)BODY

% -------- Radio Button PANEL ---------- +

+Terminal Characteristics:

 +Screen format @Z $1.#Data+ $2.#Std+ $3.#Max+ $4.#Part+

 +Terminal Type !Z ^1.#3277+ ^3.#3278+ ^5.#3290A+ ^7.#3278CF+

 ^2.#3277A+ ^4.#3278A+ ^6.#3278T+ ^8.#3277KN+

)END

Notes about syntax:

1. If a CEF field has the same CSRGRP(x) value as a previous CEF field, and

both of them have RADIO(ON), then the new CEF field is displayed as an

input field.

2. If a CEF field has a RADIO(ON) and a CSRGRP(x) value that does not

match an SAC with RADIO(ON) and a CSRGRP(x) value that comes after

it, then the CEF field is displayed as an input field.

3. If an SAC field has a RADIO(ON) and a CSRGRP(x) value that does not

match a previous CEF field with RADIO(ON) and a CSRGRP(x) value, then

the SAC field is displayed as an output field instead of a radio button.

4. If an SAC field is not followed by an output field to be used as the radio

button text, then the SAC field is displayed as an output field.

5. If the radio button choice text wraps from one row to the next, then the

text on the next line is not displayed as part of the radio button choice text,

but as normal text.

Restrictions on radio buttons and scrollable areas

v Radio button groups can appear in a scrollable area, but choices that do

not appear in the visible portion of the area are not displayed.

v If a radio button group does appear in a scrollable area, and the panel

cannot be scrolled to show all of the choices and the CEF field, then it

might not be possible to select some of the choices in the radio button

group.

v If the CEF field is scrolled out of the visible area of a scrollable area,

the SAC field and the choice text field that follow it are displayed in

the panel body as text or output fields.

Because of these scrolling restrictions, instead of using radio buttons, try

using a LISTBOX or DDLIST with the)LIST section for your application.

)ATTR Section

Chapter 7. Panel definition statement reference 197

REP(character)

For DBCS terminals, the REP keyword allows users to view, on panel

definitions, the displayable replacements for nondisplayable attribute

characters. This provides for the use of a wider range of BODY record attribute

characters that can be viewed on panel definitions. These replacement

characters are not visible on the actual panel displays.

 You can specify any replacement character, but those that must be enclosed in

single quotes are as follows: < > () + ; : , = blank.

 Replacement characters are defined in the attribute section. Then, in the body

section of the panel definition, a record containing only the defined attribute

replacement characters is inserted immediately below any field defined by a

corresponding statement in the attribute section. Each replacement character

must be in the same column position as the attribute character position in the

field above.

 When the panel definition, for example, is viewed for editing, the data field

and the characters that replace the attribute positions are both displayed.

However, when the panel is displayed, the record containing the replacement

characters is not displayed.

 Any character immediately above an attribute replacement character in the

panel definition is overlaid by the attribute character’s hexadecimal code, not

by the displayable replacement character.

 In the example shown, hexadecimal codes 38, 31, 32, and 34 are in the field

attribute positions when the panel is displayed. Because these codes are not

visible on a display, replacement characters *, !, $, and # are specified for

viewing the panel definition.

 When the panel is displayed, the attribute position above the asterisk (*)

contains hexadecimal 38; the one above the exclamation marks (!) contain

hexadecimal 31; the one above the dollar sign ($) contains hexadecimal 32, and

the one above the number sign (#) contains hexadecimal 34. None of these

attribute characters is visible on the display, and the panel definition record

containing the replacement characters is not displayed.

 The field attribute positions on the panel definition can contain any character,

illustrated as x in the example shown, because they are overlaid by the

replacement characters when the panel is displayed.

 Example:

)ATTR

 38 TYPE(INPUT) FORMAT(DBCS) REP(*)

 31 TYPE(INPUT) FORMAT(EBCDIC) REP(!)

 32 TYPE(TEXT) FORMAT(EBCDIC) REP($)

 34 TYPE(TEXT) FORMAT(MIX) REP(#)

)BODY

 + DBCS input field %===>x VARDBCS +

 *

 [DBDBDBDBDBDBDBDBDB]===>x VAREBC +

 # $!

Any characters used to replace shift-out or shift-in characters must be less than

hexadecimal 40 and must not be hexadecimal 00, 0E, or 0F.

 The EXPAND keyword cannot be used for records containing only those

characters defined by the REP keyword.

)ATTR Section

198 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

SKIP(ON|OFF)

The SKIP keyword defines the autoskip attribute of the field. It is valid only

for text or output (protected) fields (OFF is the default).

ON Specifies that the cursor automatically skips the field. When a character

is entered into the last character location of the preceding unprotected

data field, ISPF positions the cursor at the first character location of the

next unprotected field.

OFF Specifies that the cursor does not automatically skip the field when the

condition described for SKIP(ON) occurs.

When you are running in GUI mode, the SKIP keyword is ignored.

TYPE(value)

Specifies the TYPE category of the panel element. The default is TYPE(INPUT).

The TYPE values shown must be coded explicitly; it is not valid to assign any

of these values to dialog variables: AB, ABSL, CH, CHAR, CT, DATAIN,

DATAOUT, DT, ET, FP, GRPBOX, NT, PIN, PT, RP, SAC, SI, SUC, TEXT, WASL,

and WT. For simplicity, the values in examples are shown as literals.

 value may be:

Value Description

AB AB unselected choices

ABSL AB separator line

CEF Choice entry field

CH Column heading

CHAR Character attributes in a dynamic area

CT Caution text

DATAIN Input (unprotected) field in a dynamic area

DATAOUT Output (protected) field in a dynamic area

DT Descriptive text

EE Error emphasis

ET Emphasized text

FP Field prompt

GRPBOX Group box

INPUT Input (unprotected) field

LEF List entry field

LI List items

LID List item description

NEF Normal entry field

NT Normal text

OUTPUT Output (protected) field

PIN Panel instruction

PS Point-and-shoot

PT Panel title

RP Reference phrase

SAC Select available choices

SC Selected choice

SI Scroll information

SUC Select unavailable choices

TEXT Text (protected) field

VOI Variable output information

WASL Work area separator line

WT Warning text

Note: TYPE values are grouped into four categories:

)ATTR Section

Chapter 7. Panel definition statement reference 199

v Basic attribute types (TEXT|INPUT|OUTPUT). See page 200.

v Dynamic area types (CHAR|DATAIN|DATAOUT). See page 202.

v CUA panel-element types. See page 203.

v Other attribute types. See page 205.

UNAVAIL(ON|OFF)

The UNAVAIL attribute keyword is used to show the availability of a choice in

conjunction with radio buttons, checkboxes, and pushbuttons.

 The UNAVAIL attribute keyword can also be used with the LISTBOX, DDLIST,

and COMBO attribute keywords on choices specified in the)LIST section to

show the availability of a choice.

 In GUI mode, if a LISTBOX, DDLIST, or COMBO choice is set as unavailable,

that choice does not appear in the LISTBOX, DDLIST, or COMBO list of

choices.

ON Specifies that the choice is not available. In GUI mode this means that

the choice cannot be selected in the current context. In host mode, you

can still select the choice. It is up to the application you are running to

display an error message or ignore the choice. You can use the VER

statement keywords LISTX or LISTVX to handle an unavailable choice

selection.

OFF Specifies the choice is available and can be selected. This is the default

setting.

WIDTH(w)

The value of w sets the width for a list box or drop-down list. Values can be

from 0 to 99. This parameter is only used when it is specified on an input field.

See the appropriate sections on list boxes, and drop-down lists for more

information.

Basic attribute types

For text (protected) fields, the information in the body of the panel following the

attribute character is the data to be displayed. Text fields can contain substitutable

variables which consist of a dialog variable name preceded by an ampersand (&).

The name and ampersand are replaced with the value of the variable, with trailing

blanks stripped, before the panel is displayed.

For input (unprotected) or output (protected) fields in the body of the panel, a

dialog variable name immediately follows the attribute character, with no

intervening ampersand. The name is replaced with the value of the variable before

displaying the panel. For input fields, any user-entered information is stored in the

variable after the panel has been displayed.

An output field is different from a text field in that an output field has a variable

name associated with the field. It also permits padding, capitalization, justification,

and refreshing of the data. There is no default attribute character for output fields.

ISPF initializes input fields before displaying them. They can be entered (or typed

over) by the user. ISPF also initializes output fields before displaying them, but

output fields cannot be changed by the user. Both input and output fields can have

associated caps, justification, and pad attributes. There is no default attribute

character for output fields.

The default values for the data-manipulation attribute keywords, by TYPE, are

summarized in Table 9 on page 201.

)ATTR Section

200 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Table 9. Default values for data-manipulation keywords

TYPE CAPS JUST PADDING

TEXT N/A N/A N/A

INPUT ON LEFT PADC(USER)

OUTPUT ON LEFT PAD(’ ’)

The ISPF basic attribute type rules for field types (defined in Table 9) determine

which attribute keywords can be used in conjunction with the basic attribute TYPE

keywords.

Keyword Valid For

CAPS Not valid for text fields

PAD Not valid for text fields

JUST Valid only for input and output fields

ATTN Valid only for text fields

SKIP Valid only for text or output (protected) fields

NUMERIC Valid only for input fields

PADC Valid only for input or output fields

FORMAT(EBCDIC|DBCS|MIX)

EBCDIC Default value for input fields

MIX Default value for text and output fields

DBCS Valid for text, input, and output fields

Example of basic attribute types: Figure 60 on page 202 shows a panel definition

in which an attribute section is included. As previously mentioned, an attribute

section is not required in a panel definition if only the default attributes are to be

used in the panel body.

)ATTR Section

Chapter 7. Panel definition statement reference 201

Specifying dynamic areas

TYPE(DATAIN|DATAOUT|CHAR) can be specified for dynamic areas. Use

DATAIN and DATAOUT values only for specifying unprotected or protected

fields, respectively, within a dynamic area.

You can specify the ATTN, CAPS, COLOR, HILITE, INTENS, JUST, PAD, PADC,

and SKIP keywords for DATAIN and DATAOUT fields. You can specify NUMERIC

for DATAIN fields. The defaults for CAPS, JUST, and padding are different from

those for other panel fields.

The default values for the DATAIN and DATAOUT attribute keywords, by TYPE,

are summarized in Table 10.

 Table 10. Default values for DATAIN and DATAOUT keywords

TYPE CAPS JUST PADDING

DATAIN OFF ASIS PAD(’ ’)

DATAOUT OFF ASIS PADC(’ ’)

For more information about TYPE(CHAR) see “Character-level attribute support

for dynamic areas” on page 148.

CUA attribute characteristics in dynamic areas: You can define dynamic area

DATAIN and DATAOUT attributes with CUA attribute characteristics. You do this

)ATTR

 * TYPE(TEXT) INTENS(HIGH) COLOR(WHITE) CAPS(OFF)

 # TYPE(TEXT) INTENS(HIGH) COLOR(BLUE) CAPS(OFF)

 @ TYPE(TEXT) INTENS(LOW) COLOR(BLUE) HILITE(REVERSE)

 ? TYPE(TEXT) INTENS(LOW) COLOR(TURQ) CAPS(OFF)

 _ TYPE(INPUT) INTENS(HIGH) COLOR(YELLOW)

 $ TYPE(INPUT) INTENS(NON)

 ø TYPE(OUTPUT) INTENS(LOW) COLOR(TURQ) CAPS(OFF)

)BODY

* --------------------------@EMPLOYEE RECORD*--------------------------

SERIAL NO.*===>_SERNUM +&rbl %

NAME:?&LAST, &FIRST

ADDRESS:øADDR1 +

øADDR2 +

øADDR3 +

øADDR4 +

POSITION:øPOSIT +

YEARS EXPERIENCE:øYRS+

SALARY:øSALARY + # PASSWORD*===>$PSW +

(Password is required for salary)

* Enter#END*command to terminate application.

)PROC

 VER(&SERNUM,NB,NUM)

 .ATTR(.CURSOR) = ‘COLOR(RED) HILITE(BLINK)’

)END

Figure 60. Attribute section in a panel definition

)ATTR Section

202 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

with the attribute keyword CUADYN(value) on the TYPE(DATAIN) or

TYPE(DATAOUT) attribute statements. DATAIN and DATAOUT fields that you

define with the CUADYN(value) keyword are not true CUA attribute fields, but

are DATAIN and DATAOUT fields that have taken on CUA attribute

characteristics.

The valid values of CUADYN for each TYPE keyword are:

Field Type Valid Attribute Keyword

DATAIN CEF, EE, LEF, NEF

DATAOUT CH, CT, DT, ET, FP, LI, LID, NT, PIN, PT, SAC, SI, SUC, VOI,

WASL, WT

The CUADYN(value) keyword is ignored on any type other than DATAIN or

DATAOUT. The values allowed on the TYPE(DATAOUT) statement are ignored if

specified on the TYPE(DATAIN) statement, and the reverse is also true.

After the DATAIN or DATAOUT attribute is defined with CUA attribute

characteristics, the color, intensity, and highlighting of the attribute can only be

overridden using the CUA Attribute Color Change utility.

CUA panel-element types

The CUA guidelines define the default colors and emphasis techniques for

individual panel elements. The CUA guidelines also request that application users

be allowed to change the color and emphasis for individual panel elements. To

conform with CUA principles, ISPF provides panel-element attributes. The CUA

Attribute Change Utility, which is invoked with the CUAATTR command or by

selecting the “CUA attributes” choice from the Colors pull-down on the ISPF

Settings panel, allows you to change the color and emphasis for individual panel

elements.

You can define those panel-element attributes that have a TYPE keyword value in

the panel attribute section. The panel-element attributes without a TYPE keyword

value are used internally by ISPF in response to user interactions.

These field types of the CUA panel-element attributes play a major role in

determining which attribute keywords can be used with the CUA panel-element

attribute values.

Field Type Valid Attribute Keyword

Input, Unprotected CEF, EE, LEF, NEF

Output, Protected VOI, LID, LI

Text, Protected ABSL, CH, CT, DT, ET, FP, NT, PIN, PS, PT, SAC,

SI, SUC, WASL,WT

Text, Unprotected AB, RP

The ISPF CUA attribute type rules for field types (defined in Table 11 on page 204)

determine which attribute keywords can be used in conjunction with the CUA

panel-element TYPE keywords.

Table 11 on page 204 lists the CUA values for the TYPE keyword. With each TYPE

keyword are listed additional attribute keywords and their default values.

)ATTR Section

Chapter 7. Panel definition statement reference 203

Table 11. CUA TYPE default keyword values

TYPE

Keyword

Value COLOR * INTENS * HILITE * CAPS JUST PAD PADC SKIP

NUM-

ERIC FORMAT

AB WHITE HIGH NONE N/A N/A N/A N/A N/A N/A MIX

CEF TURQ LOW USCORE OFF LEFT B N/A OFF EBCDIC

EE YELLOW HIGH REVERSE OFF LEFT 6D N/A OFF EBCDIC

LEF TURQ LOW USCORE OFF ASIS B N/A OFF EBCDIC

NEF TURQ LOW

1

USCORE OFF LEFT B N/A OFF EBCDIC

RP WHITE HIGH NONE N/A N/A N/A N/A N/A N/A MIX

ABSL BLUE LOW NONE N/A N/A N/A N/A OFF N/A MIX

CH BLUE HIGH NONE N/A N/A N/A N/A OFF N/A MIX

CT YELLOW HIGH NONE N/A N/A N/A N/A OFF N/A MIX

DT GREEN LOW NONE N/A N/A N/A N/A OFF N/A MIX

ET TURQ HIGH NONE N/A N/A N/A N/A OFF N/A MIX

FP GREEN LOW NONE N/A N/A N/A N/A OFF N/A MIX

NT GREEN LOW NONE N/A N/A N/A N/A OFF N/A MIX

PIN GREEN LOW NONE N/A N/A N/A N/A OFF N/A MIX

PS TURQ HIGH NONE N/A LEFT B OFF N/A MIX

PT BLUE LOW NONE N/A N/A N/A N/A OFF N/A MIX

SAC WHITE LOW NONE N/A N/A N/A N/A OFF N/A MIX

SI WHITE HIGH NONE N/A N/A N/A N/A OFF N/A MIX

SUC BLUE LOW NONE N/A N/A N/A N/A OFF N/A MIX

WASL BLUE LOW NONE N/A N/A N/A N/A OFF N/A MIX

WT RED HIGH NONE N/A N/A N/A N/A OFF N/A MIX

LI WHITE LOW NONE OFF ASIS B OFF N/A MIX

LID GREEN LOW NONE OFF ASIS B OFF N/A MIX

VOI TURQ LOW NONE OFF LEFT B OFF N/A MIX

Notes:

1. The attribute keywords whose value is denoted with N/A (not applicable) are

not valid to use in conjunction with the corresponding TYPE keyword value.

2. It is not valid to use the attribute keywords FORMAT, REP, and OUTLINE with

TYPE(AB). If used, the default values remain in effect.

3. You cannot change the keyword values for COLOR, INTENS, or HILITE. This is

indicated with an * in the preceding table. If you attempt to change these

keyword values, you will get an error condition. The exceptions are the CUA

attribute types NEF, LEF, VOI, LID, and LI. NEF, LEF, VOI, LID, and LI support

the INTENS(NON) keyword value.

4. You can change the default values of COLOR, INTENS, and HIGHLIGHT by

using the CUAATTR command or by selecting the “CUA attributes” choice

from the Colors pull-down on the ISPF Settings panel.

1. You may specify the INTENS(NON) keyword with the CUA type NEF.

)ATTR Section – TYPE Keyword

204 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

5. The character B in the PAD column stands for blank. The PAD and PADC

keywords are mutually exclusive, so when PAD is set to B (blank, X’40’) PADC

cannot be set. The EE pad character is X'6D', underscore.

6. Three keywords not shown on this table are ATTN, REP, and OUTLINE. ATTN

always is N/A, REP is defined by the dialog, and OUTLINE is NONE.

7. Another keyword not shown on this table is CKBOX. CKBOX is only used with

TYPE(CEF). This keyword is ignored when running in non-GUI mode. For

more information about using CKBOX, see the “CKBOX Keyword” on page

181.

Table 12 lists the CUA panel-element attributes that are used internally by ISPF in

response to user interactions. These panel-element attributes do not have a TYPE

keyword, so you cannot code them in the panel attribute section. They are

considered as field-type text (that is, protected). The related attribute keywords and

their default values are shown for each.

 Table 12. Internal attributes without TYPE keyword values

Panel Element Attribute COLOR INTENS HILITE

AB Selected Choices YELLOW LOW NONE

PD Choices BLUE LOW NONE

Function Keys BLUE LOW NONE

Informational Message Text WHITE HIGH NONE

Warning Message Text YELLOW HIGH NONE

Action Message Text RED HIGH NONE

Panel ID BLUE LOW NONE

You can change the default values of COLOR, INTENS, and HIGHLIGHT by using

the CUAATTR command or by selecting the “CUA attributes” choice from the

Colors pull-down on the ISPF Settings panel.

Other attribute types

The other attribute types consist of the Group Box (GRPBOX) and Selected Choice

(SC).

Group box: A group box is a rectangle that is drawn around a group of related

fields. The upper-left corner of the box contains a label for the group. Group boxes

display in GUI mode only.

To specify a group box, use the type keyword GRPBOX. Its syntax is:

attribute-char TYPE(GRPBOX) WIDTH(wvalue) DEPTH(dvalue)

Where:

v attribute-char is the special character or 2-position hexadecimal value used to

define the group box area within the panel body section. The area is defined by

using the special character to position the upper-left corner of the group box in

the panel body section.

v wvalue is the width of the group box, not including the borders. This value can

be 0 to 99. For example, a specification of WIDTH(9) means the box can contain

data 9 characters wide.

v dvalue is the depth of the group box, including the group box title line. This

value can be 0 to 99. A minimum of 2 lines must be defined for the box. The top

)ATTR Section – TYPE Keyword

Chapter 7. Panel definition statement reference 205

line is reserved for the label. For example, a specification of DEPTH(5) means

the box consists of a group box title and 4 lines of data.

In the panel body section, the name immediately following the special character

for the upper-left corner of the group box identifies the dialog variable that

contains the text for the group box label. In Figure 61 on page 207, that name is

gbar. The name cannot be specified by using a Z-variable placeholder within the

panel body.

Some things to remember when defining group boxes are:

v Input/output/text fields should have ending attributes within the group box, or

blanks where the box border falls.

v Dynamic areas are allowed within group boxes, and should be entirely

contained within the box.

v Group boxes cannot be defined within dynamic areas.

v Dynamic areas and group boxes should not overlap.

v Scrollable areas are allowed within group boxes, and should be entirely

contained within the box.

v Group boxes are allowed within scrollable areas, and should be entirely

contained within the area.

v Scrollable areas and group boxes should not overlap.

v Group boxes should not be used with graphic areas.

v If the parameters WIDTH and DEPTH are not specified, the group box does not

display.

v If you specify WIDTH with no DEPTH, DEPTH(0) is assumed. This means the

group box ends at the bottom of the panel.

v If you specify DEPTH with no WIDTH, WIDTH(0) is assumed. This means the

group box does not display.

v If the group box DEPTH is coded as zero and the group box is within a

scrollable area, the group box expands to the bottom of the scrollable area.

v If the depth of the scrollable area is less than the group box DEPTH, the group

box ends at the bottom of the visible scrollable area. The group box DEPTH is

expanded when scrolling up, as long as the maximum group box depth has not

been reached and the group box title is within the displayed portion of the

scrollable area. After the group box title is no longer displayed in the scrollable

area, the group box no longer appears.

Note: Even though the type GRPBOX is considered an output field, it maps to the

CUA panel-element type Column Heading (CH). Therefore, its color,

intensity, and highlight values can only be changed through the CUA

Attribute Change Utility.

)ATTR Section – TYPE Keyword

206 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Selected choice: The Select Choice (SC) type is an output (protected) field to be

used in conjunction with the UNAVAIL attribute keyword.

When TYPE(SC) is coded with the UNAVAIL(OFF) attribute, the field has the color,

intensity, and highlighting characteristics of TYPE(SAC).

When TYPE(SC) is coded with the UNAVAIL(ON) attribute, the field has the color,

intensity, and highlighting characteristics of TYPE(SUC).

You can use field overrides on the choices.

Relationship to Control variables .ATTR and .ATTRCHAR

The appropriate and inappropriate override conditions for CUA and basic

panel-element attributes are described here. See “.ATTR and .ATTRCHAR” on page

286 for information on .ATTR and .ATTRCHAR.

v TYPE

CUA panel-element attribute TYPE keywords can be overridden by .ATTR or by

.ATTRCHAR. You can change the TYPE:

– From INPUT/CUA input types to OUTPUT/CUA output and input types

– From OUTPUT/CUA output types to INPUT/CUA input and output types

– From TEXT/CUA text types to TEXT/CUA text types

Some exceptions are:

– Only TYPE keyword values that have a field type of input can be overridden

with TYPE(EE)—error emphasis.

– CUA attribute types AB, RP, ABSL, and PS cannot be overridden, nor can

they be used to override text fields.

– TYPE keyword GRPBOX can only be overridden with .ATTR(field), where field

is the dialog variable name for the group box as specified in the)BODY

section.
v COLOR, INTENS, HILITE

)ATTR

 + TYPE(TEXT) INTENS(low) SKIP(on)

 % TYPE(TEXT) INTENS(HIGH) SKIP(on)

 _ TYPE(INPUT) INTENS(HIGH) CAPS(ON)

 # TYPE(GRPBOX) WIDTH(44) DEPTH(7)

)BODY

* --------------------------Group Box Example--------------------------

%COMMAND ===>_ZCMD

+ +

+ #gbar +

+ +

+ +Available Desired+ +

+ +Cruise Control Sunroof+ +

+ +AM/FM Stereo AM/FM Stereo +

+ +Power Brakes+ +

+ +Sunroof+ +

+ +

+ +

)INIT

&zcmd = &z

&gbar = ’Options’

)REINIT

&zcmd = &z

)PROC

)END

Figure 61. Group box definition

)ATTR Section – TYPE Keyword

Chapter 7. Panel definition statement reference 207

If you change a basic attribute type to a CUA attribute type, the attribute takes

on the characteristics of that particular CUA type, including the default COLOR,

HILITE, and INTENS keyword values. For example, if you change a

TYPE(INPUT) INTENS(HIGH) attribute to TYPE(NEF), the default color for the

attribute changes from red to turquoise, the default color of the NEF attribute

type. Also, after you change a basic attribute type into a CUA attribute type, the

color, highlight, and intensity can only be overridden by using the CUA

Attribute Color Change utility.

For example, hoping to change the TYPE(INPUT) to CUA TYPE(NEF) with the

color pink, you enter:

.ATTR(FIELD1) = ’TYPE(NEF) COLOR(PINK)’

The result is that the field is changed to CUA TYPE(NEF), but when the

COLOR(PINK) keyword is processed a dialog error message is given stating that

the color of the CUA attribute cannot be overridden.

If you try to enter:

.ATTR(FIELD1) = ’COLOR(PINK) TYPE(NEF)’

The COLOR(PINK) keyword is processed before the TYPE(NEF) keyword. Thus,

no error message is given concerning the changing of the color of a CUA

attribute. However, when the TYPE(NEF) keyword is processed, the attribute

type is changed to the CUA default color, and subsequent attempts to change

the attribute’s color, intensity, or highlighting result in a dialog error message.

If you change a CUA attribute type to a basic attribute type, only the type

changes. The other characteristics associated with the type do not change. For

example, the color associated with the CUA type does not change unless you

specifically override the color using the COLOR keyword. If you change the

CUA type ET to basic type TEXT, the color remains turquoise unless you

purposely override it.

v CAPS, JUST, PAD, PADC, SKIP, ATTN, NUMERIC, FORMAT, REP, OUTLINE

If the keyword is applicable on the)ATTR statement, it can be overridden using

the attribute override statements. Those panel attribute keywords whose value is

denoted as N/A (not applicable) are not valid in attribute override statements.

v CUADYN(value) keyword

The CUADYN(value) attribute keyword can be used in .ATTRCHAR statements

for DATAIN or DATAOUT attribute characters. The keyword values listed in

“CUA attribute characteristics in dynamic areas” on page 202 for DATAOUT

attributes can only override DATAOUT attribute characters. Those listed for

DATAIN attributes can only override DATAIN attribute characters.

v Input fields with LISTBOX(ON|name) or DDLIST(ON|name)

You can override input fields with LISTBOX(ON|name) or DDLIST(ON|name)

that are coded in the)ATTR section. You do this by using the .ATTR or

.ATTRCHAR statements to set LISTBOX, DDLIST, CSRGRP, WIDTH, and

DEPTH values for the input field.

v Input fields with COMBO(ON|name)

You can override input fields with COMBO(ON|name) that are coded in the

)ATTR section. You do this by using the .ATTR or .ATTRCHAR statements to set

COMBO, CSRGRP, and DEPTH values for the input field.

)ATTR Section – TYPE Keyword

208 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Defining the body section

The)BODY (panel body) section of the panel definition specifies the format of the

panel as the user sees it. Each record in the body section corresponds to a line on

the display.

The body section begins with the)BODY header statement, which can be omitted

if there are no preceding sections and no change to the default attribute characters.

The)BODY header statement and all associated keywords must be specified on the

same line. The panel body ends with any of these statements:

)MODEL)FIELD

)AREA)HELP

)INIT)PNTS

)REINIT)LIST

)PROC)END

)BODY

[KANA]

[WINDOW(width,depth)]

[CMD(field name)]

[SMSG(field name)]

[LMSG(field name)]

[ASIS]

[WIDTH(width)]

[EXPAND(xy)]

[DEFAULT(def1def2def3)]

[FORMAT(EBCDIC|DBCS|MIX)]

[OUTLINE([L][R][O][U]|BOX|NONE)]

Notes:

1. There are system-defined (default) areas for the display of messages and the

command field. You can specify alternate locations using the WINDOW, CMD,

SMSG, LMSG, and ASIS keywords on the)BODY header statement.

2. The WIDTH and EXPAND keywords on the)BODY header statement control

the width of a panel. Both keywords are optional. You can specify either or

both. However, if the panel definition width is greater than 80 characters, the

WIDTH keyword must be used. If the WIDTH keyword is used, the WIDTH

variable must be set in the variable pool before the panel is displayed.

3. DEFAULT, FORMAT, and OUTLINE can also be specified on the)ATTR section

statement. The values specified on the)BODY section statement take

precedence.

where:

KANA

Include the KANA keyword when Katakana characters will appear within the

panel and you have not specified an extended code page using the)CCSID

section.

WINDOW(width,depth)

Identifies the width and depth of the window that the Dialog Manager uses

when displaying the panel in a pop-up window. The values do not include the

panel borders; the Dialog Manager adds them outside of the dimension of the

width and depth values.

Note: When you are running in GUI mode, the width you specify is respected

regardless of whether the panel is displayed in a pop-up window. The

depth is honored when the panel is displayed in a pop-up window. If

)BODY Section

Chapter 7. Panel definition statement reference 209

you specify a depth greater than the depth of the panel definition, extra

lines are generated to fill the space. Any extendable areas (such as

AREA(DYNAMIC), or AREA(SCRL) with EXTEND(ON)) might be

truncated at the depth of the pop-up window.

For panels not displayed in a pop-up window, the depth is the

minimum of the specified depth and the actual number of)BODY

records in the panel definition. Extendable areas are not truncated. That

is, the depth expands to the length of the logical screen.

The width that you specify must be a numeric value greater than or equal to

the minimum width of 8 characters. The depth that you specify must be a

numeric value greater than 0.

Note: The width and depth cannot be specified by a dialog variable.

For panels that are not being displayed in a pop-up window (no active

ADDPOP), ISPF validates the width and depth values against the screen size

and issues an error message if either:

v The width is greater than the current device width.

v The depth is greater than the current device depth.

For help panels and panels that are being displayed in a pop-up window (after

ADDPOP service), ISPF validates the width and depth values against the

screen size minus the frame and issues an error message if:

v The depth is greater than the screen depth minus 2.

v The depth is less than the screen depth minus 2 and the width is greater

than the screen width minus 3.

v The depth is equal to the screen depth minus 2 and the width is greater than

the screen width minus 4.

When running in GUI mode, the frame will be what you specified on

ISPSTART unless its ADDPOP was specified in a dialog. In this case, the frame

is a dialog frame.

 The Dialog Manager recognizes the WINDOW keyword for panels displayed

in a pop-up window (after an ADDPOP service request has been issued), and

when running in GUI mode. If the panel is not being displayed in a pop-up

window and you are not in GUI mode, ISPF validates the keyword, but

ignores it. If the text on the panel you are defining exceeds the width of the

window, the panel fields do not wrap. All fields end at the window width.

Note: Text coded in column 1 of the panel body does not appear when a panel

is displayed in a pop-up window. This occurs because ISPF places a

field attribute in the column following the pop-up border character, due

to hardware requirements. Without the field attribute after the border

character, subsequent panel text would have the attributes (color,

intensity, and so on) of the window frame. Therefore, your panel text

should be coded so that it does not start in column 1 of the body if you

are going to display your panel in a pop-up window.

Attributes coded in column 1 of the panel body overlay the field attributes that

ISPF generates following the left side of the window frame. Therefore, an

attribute coded in column 1 of the panel will be in effect for subsequent text.

CMD(field-name)

Identifies the panel field (variable name) to be treated as the command field.

The field type must be a CUA input type. If the CMD keyword is omitted from

a)BODY statement, ISPF uses the first input field as a default command field.

)BODY Section

210 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

You can specify that you do not want a command field by using CMD(). Do

not use this option for a table display. You must have a command field for a

table display.

SMSG(field-name)

Identifies the panel field (variable name) where the short message, if any, is to

be placed. The field type must be a CUA output type. If the message is longer

than the length of this field, the message is placed in a pop-up window. The

SMSG keyword does not effect placement of the TOP-ROW-DISPLAYED

indicator which is right-justified on the top line of the display, or just below

the action bar separator line if an action bar is defined.

LMSG(field-name)

Identifies the panel field (variable name) where the long message, if any, is to

be placed. The field type must be a CUA output type. If the message is longer

than the length of this field, the message is placed in a pop-up window.

Notes:

1. For CMD, SMSG, and LMSG the field-name must be within the)BODY

section, not within a scrollable area or table.

2. For long or short messages in pop-up windows, if the message originates

from panel processing, as in a verification error message, the message

pop-up window is placed adjacent to the field that is the object of the

validation.

3. The format of the command, long-message, and short-message fields must

not be FORMAT(DBCS). Because a FORMAT(EBCDIC) field does not

display DBCS characters correctly, FORMAT(MIX) is recommended.

4. For additional information about the placement of the command and long

message fields, see about understanding ISPF panels in the z/OS ISPF

User’s Guide Vol I.

ASIS

Specifies that the command and long message fields are to appear on the

display as specified in the panel definition. When ASIS is specified, any user

request, using SETTINGS option 0 or by setting system variable ZPLACE, to

reposition the command and long message fields is ignored.

WIDTH(width)

The number of columns to use in formatting the panel. width can be a constant

or a dialog variable, including the system variable &ZSCREENW The specified

width must not be less than 80 or greater than the width of the terminal on

which the panel is to be displayed. If the WIDTH keyword is not specified, the

default is 80.

EXPAND(xy)

The repetition delimiter characters. The delimiters can be used on any line

within the panel body to enclose a single character that is repeated to expand

the line to the required width. The starting and ending delimiter can be the

same character. If no delimiters are specified, or if any line does not contain

the delimiters, then the line is expanded to the required width by adding

blanks on the right. The delimiter characters cannot be specified with a dialog

variable.

 Before the panel is displayed, it is formatted according to the WIDTH and

EXPAND keyword values as if the expanded format of the body were originally

coded in the panel definition. For example:

)BODY Section

Chapter 7. Panel definition statement reference 211

)BODY WIDTH(&EDWIDTH) EXPAND(//)

+-- &TITLE ---------------------------------/-/----------

%COMMAND ===>_ZCMD / / +SCROLL%===>_SCRL +

+

%EMPLOYEE NUMBER:@EMPLN / / @

In the title line, hyphens are repeated to expand the line to the width specified

by &EDWIDTH The command field and the employee number field would

both be expanded with repeated blanks.

 If more than one repetition character appears in a line of the panel body, each

of the characters is repeated an equal number of times. For example:

)BODY EXPAND(#@)

TUTORIAL #-@ TITLE OF PAGE #-@ TUTORIAL

would become:

TUTORIAL ------------ TITLE OF PAGE ------------ TUTORIAL

ISPF treats as an error a request to display a panel that is wider than the

physical screen or current logical screen for a 3290 terminal. ISPF displays a

box panel indicating the error. For the 3290, if a panel that is wider than 80

characters is being displayed, and the user attempts to divide the screen

vertically (SPLITV command), ISPF denies the request and displays an error

message. Remember that the panel is displayed as though the expanded format

of the body were originally coded in the panel definition. Therefore, be careful

when expanding text fields that contain substitutable variables, so that

meaningful text is not truncated. For example:

)BODY EXPAND(//)

TUTORIAL /-/ &VAR1 /-/ TUTORIAL

would become:

TUTORIAL ---------------- &VAR1 ---------------- TUTORIAL

Then, if &VAR1 had the value ‘ABCDEFG’ when the screen was displayed, this

line would result:

TUTORIAL ---------------- ABCDEFG ---------------- TUTORI

To avoid this problem, provide a few blanks at the end of the text string, as

follows:

TUTORIAL /-/ &VAR1 /-/ TUTORIAL +

Table 13 and Table 14 on page 213 describe the display width, data expansion

width (resulting from EXPAND keyword on the)BODY statement), and the

pop-up window width based on various WINDOW/WIDTH keyword

combinations.

 Table 13. Display in primary window

WINDOW/WIDTH

Combinations

DISPLAY EXPANSION

no WINDOW, no WIDTH WIDTH (def. 80) WIDTH (def. 80)

WINDOW, no WIDTH WIDTH (def. 80) WINDOW value

no WINDOW, WIDTH WIDTH WIDTH value

WINDOW <= WIDTH WIDTH WINDOW value

WINDOW > WIDTH ERROR ERROR

)BODY Section

212 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Table 14. Display in pop-up window

WINDOW/WIDTH

Combinations

DISPLAY EXPANSION WINDOW

no WINDOW, no WIDTH WIDTH (def. 80) WIDTH (def. 80) (76, 22)

WINDOW, no WIDTH WIDTH (def. 80) WINDOW value WINDOW (w, d)

no WINDOW, WIDTH WIDTH WIDTH value (76, 22)

WINDOW <= WIDTH WIDTH WINDOW value WINDOW (w, d)

WINDOW > WIDTH ERROR ERROR ERROR

Note: ISPF will issue an error message if you attempt to display a panel in a

pop-up window where the WINDOW width value is greater than the

width of the underlying panel.

DEFAULT(def1def2def3)

You can use the DEFAULT keyword to specify the characters that define a

high-intensity text field, a low-intensity text field, and a high-intensity input

field, respectively. The value inside the parentheses must consist of exactly

three characters, not enclosed in single quotes and not separated by commas or

blanks.

 The DEFAULT keyword can also be specified on the)ATTR section statement.

FORMAT(EBCDIC|DBCS|MIX)

The default value for a TYPE(INPUT) and a TYPE(DATAIN) field is

FORMAT(EBCDIC). These two default values can be changed by using the

)ATTR statement or the)BODY statement. These values, in turn, can be

overridden if explicitly specified on a subsequent statement. For example, the

net result of these two statements is FORMAT(DBCS):

)BODY FORMAT(MIX)

 $ TYPE(INPUT) FORMAT(DBCS)

OUTLINE([L][R][O][U]|BOX|NONE)

The default value for OUTLINE is NONE. The default value for TYPE(INPUT)

and TYPE(DATAIN) fields can be specified on the)ATTR or)BODY statement

and can be overridden by the OUTLINE keyword. For example:

)BODY OUTLINE(U)

 @ TYPE(INPUT) OUTLINE(BOX)

A sample panel body section

The sample panel definition, shown in Figure 62 on page 214, consists of a panel

body followed by an)END control statement. It has no attribute, initialization,

reinitialization, or processing sections, and uses the default attribute characters.

This data entry panel has 11 input fields (for example, ZCMD and TYPECHG)

indicated with the underscore attribute character. It also has a substitutable

variable (EMPSER) within a text field. The first two lines of the panel and the

arrows preceding the input fields are all highlighted, as indicated by the percent

sign attribute characters. The other text fields are low intensity, as indicated by the

plus sign attribute characters.

)BODY Section

Chapter 7. Panel definition statement reference 213

Figure 63 shows the panel as it appears when displayed, assuming that the current

value of EMPSER is 123456 and that the other variables are initially null.

Defining the CCSID section

The)CCSID section identifies the Coded Character Set Identifier used in the panel

definition.

)CCSID [NUMBER(xxxxx)]

where:

)Body

%---------------------------- EMPLOYEE RECORDS ------------------------------

%COMMAND ===>_ZCMD %

%

%EMPLOYEE SERIAL: &EMPSER

+

+ TYPE OF CHANGE%===>_TYPECHG + (NEW, UPDATE, OR DELETE)

+

+ EMPLOYEE NAME:

+ LAST %===>_LNAME +

+ FIRST %===>_FNAME +

+ INITIAL%===>_I+

+

+ HOME ADDRESS:

+ LINE 1 %===>_ADDR1 +

+ LINE 2 %===>_ADDR2 +

+ LINE 3 %===>_ADDR3 +

+ LINE 4 %===>_ADDR4 +

+

+ HOME PHONE:

+ AREA CODE %===>_PHA+

+ LOCAL NUMBER%===>_PHNUM +

+

)End

Figure 62. Sample panel definition

 ---------------------------- EMPLOYEE RECORDS ------------------------------

 COMMAND ===>

 EMPLOYEE SERIAL: 123456

 TYPE OF CHANGE ===> (NEW, UPDATE, OR DELETE)

 EMPLOYEE NAME:

 LAST ===>

 FIRST ===>

 INITIAL ===>

 HOME ADDRESS:

 LINE 1 ===>

 LINE 2 ===>

 LINE 3 ===>

 LINE 4 ===>

 HOME PHONE:

 AREA CODE ===>

 LOCAL NUMBER ===>

Figure 63. Sample panel—when displayed

)BODY Section

214 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

NUMBER(xxxxx)

The CCSID of the EXTENDED CODE PAGE as defined by Character Data

Representation Architecture. See “Supported CCSIDs” on page 351 for which

CCSIDs are supported.

The)CCSID section must be the first section in the panel as illustrated in this

example:

)CCSID NUMBER(00037)

)PANEL

)BODY

%---------------------- NAME OF PANEL -------------------------------

%COMMAND ===>__ZCMD ...
)END

If the CCSID section is used, the single-byte text characters in the)BODY,)AREA,

or)MODEL section of the panel are translated to the equivalent character (or a

period if the character does not exist) in the terminal code page for display. ISPF

scans the panel for a text attribute, notes the position, and then scans for a non-text

attribute. When the non-text attribute is found, ISPF translates the text between the

text attribute and the non-text attribute. Thus you must have one text attribute

defined before any text you want translated. This translation occurs only if the

code page indicated by the CCSID is different from the code page of the terminal.

All characters in the panel source that are not in the)BODY text must be in the

Syntactic Character Set:

v A-Z

v a-z

v 0-9

v + < = > % & * ″ ’

v () , _ - . / : ; ?

Note: Lowercase a-z can be used for any CCSID supported by ISPF except the

Japanese (Katakana) Extended CCSID 930.

See Chapter 11, “Extended code page support,” on page 347

Defining the END section

The)END section identifies the end of the panel definition. It is a required section.

)END

The definition consists only of the)END statement. Any lines placed after the END

statement are ignored.

)PANEL

)BODY

%---------------------- NAME OF PANEL -------------------------------

%COMMAND ===>__ZCMD ...
)END

Defining the FIELD section

The)FIELD section of a panel definition specifies what fields, if any, are scrollable

fields. Defining a field as scrollable provides the ability to display and input a

variable larger than the display area that the dialog variable occupies. The LEFT,

RIGHT, and ZEXPAND primary commands are active when the cursor is

)CCSID Section

Chapter 7. Panel definition statement reference 215

positioned within the variable on the display panel. These enable left and right

scrolling and expansion of the variable into a pop-up window.

)FIELD

 FIELD(field-name)

 [LEN(value|field-name)]

 [IND(field-name,value)]

 [LIND(field-name,value)]

 [RIND(field-name,value)]

 [SIND(field-name,value)]

 [LCOL(field-name)]

 [RCOL(field-name)]

 [SCALE(field-name)]

 [SCROLL(value|field-name)]

Notes:

1. Each entry in the)FIELD section must begin with the keyword FIELD.

2. With the exception of the LCOL parameter, all dialog variable names must be

unique to each parameter.

3. Scrollable field support is panel specific. A subsequent panel display that

references the same variable but does not define it as scrollable may cause data

truncation (depending on the data lengths involved).

where:

FIELD(field-name)

The name of the field on the panel that this statement controls.

LEN(value|field-name)

Length of the displayed variable.

 value: Specify a value between 1 and 32 767.

 field-name: The length dialog variable can be used to specify an initial length if

it contains a value between 1 and 32 767. After the display, this variable will

contain the calculated display length.

 Calculated display length: The length of the variable will be the maximum

value of the default display variable length and the specified length.

 Default: If the LEN parameter is not specified, the field will default to the

length of the dialog variable, if it exists. For variables referenced in a)MODEL

section, the dialog variable length will be the maximum of all instances on the

current display for that variable.

IND(field-name,value)

Left and right scroll indicator dialog variable.

 field-name: This must refer to a 2 byte scroll indicator dialog variable that will

be updated on the panel to indicate whether left and right scrolling can be

performed.

 value: (Default -+) Specify a 2 byte literal (enclosed in quotes) to override the

default scroll indicator values. Each byte must be nonblank.

 Displays as:

-+ : Indicates that you can scroll left and right

- : Indicates that you can only scroll left

 + : Indicates that you can only scroll right.

 Panel definition:

)FIELD Section

216 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

)ATTR

| TYPE(OUTPUT) CAPS(OFF) JUST(ASIS)

_ TYPE(INPUT) CAPS(OFF) JUST(ASIS)

)BODY

+Scrollable Variable:_SCRFLD |SCRIND+

)FIELD

 FIELD(SCRFLD) IND(SCRIND,’<>’) /* replace -+ with <> */

Panel display:

 Scrollable Variable: CDEFGHIJKLMNOPQRST <>

LIND(field-name,value)

Left scroll indicator dialog variable.

 field-name: This must refer to a 1 byte left scroll indicator dialog variable that

will be updated on the panel to indicate whether left scrolling can be

performed.

 value: (Default -) Specify a 1 byte nonblank literal (enclosed in quotes) to

override the default left indicator value.

 Displays as:

value : Indicates that you can scroll left

blank : Indicates you are positioned at the start of the field.

 Panel definition:

)FIELD

 FIELD(SCRFLD) LIND(LSCRIND,’<’) /* replace - with < */

RIND(field-name,value)

Right scroll indicator dialog variable.

 field-name: This must refer to a 1 byte right scroll indicator dialog variable that

will be updated on the panel to indicate whether right scrolling can be

performed.

 value: (Default +) Specify a 1 byte nonblank literal (enclosed in quotes) to

override the default right indicator value.

 Displays as:

value : Indicates that you can scroll right

blank : Indicates you are positioned at the end of the field.

 Panel definition:

)FIELD

 FIELD(SCRFLD) RIND(RSCRIND,’>’) /* replace - with > */

SIND(field-name,value)

Separator scroll indicator dialog variable. This field will be initialized with the

value repeated for the length of the field on the panel. If the field is scrollable

to the left, the leftmost byte will be the value of the left indicator (default ’-’).

If the field is right scrollable, the rightmost byte will be the value of the right

indicator (default ’+’).

 field-name: This must refer to a 3 byte scroll indicator dialog variable that will

be updated on the panel to indicate whether left and right scrolling can be

performed.

 value: (Default ’<->’) Specify a 3 byte literal (enclosed in quotes) to override the

default separator indicator values. The 3 bytes represent the left scroll

indicator, the separator value and the right scroll indicator respectively. Each

byte must be nonblank.

)FIELD Section

Chapter 7. Panel definition statement reference 217

Panel definition:

)ATTR

| TYPE(OUTPUT) CAPS(OFF) JUST(ASIS)

_ TYPE(INPUT) CAPS(OFF) JUST(ASIS)

)BODY

+Separator Variable:|SEPIND |

+Scrollable Variable:_SCRFLD |

)FIELD

 FIELD(SCRFLD) SIND(SEPIND)

Panel display:

Separator Variable: <---------------->

Scrollable Variable: CDEFGHIJKLMNOPQRST

LCOL(field-name)

Left column dialog variable - to display current left position.

 field_name: This must refer to a dialog variable that will be updated when the

field is scrolled to contain the left column value. You can use this to specify an

initial left column position for the scrollable field. It must be a numeric value

greater than or equal to 1. Values greater than the maximum left column

position will be set to the maximum left column position.

Note: Fields with the same left column dialog variable will scroll

simultaneously and will have the same left column value up to the

maximum for each field.

RCOL(field-name)

Right column dialog variable - to display current right position.

 field_name: This must refer to a dialog variable that will be updated when the

field is scrolled to contain the right column value. It is an output field only.

Any pre-existing values will be ignored and will be replaced with the current

right column value.

SCALE(field-name)

Scale indicator dialog variable. This field will be initialized with a scale line

reflecting the current columns within the field being displayed. The variable

will occupy the display length on the panel with the a value as follows:

----+----1----+----2----+----3... etc.

field_name: This must refer to the dialog variable that is placed on the panel in

the position at which the scale line is to be initialized.

 Panel definition:

)ATTR

| TYPE(OUTPUT) CAPS(OFF) JUST(ASIS)

_ TYPE(INPUT) CAPS(OFF) JUST(ASIS)

)BODY

+Scale Line :|SCLIND |

+Scrollable Variable:_SCRFLD |

)FIELD

 FIELD(SCRFLD) SCALE(SCLIND)

Panel display:

Scale Line : --+----1----+----2

Scrollable Variable: CDEFGHIJKLMNOPQRST

SCROLL(value|field-name)

Scroll control field.

value: OFF - field is not scrollable

)FIELD Section

218 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

ON - field is scrollable

field_name: specifies a scroll control dialog variable which you can set to a

value of OFF to turn scrolling off from the application or from the panel.

 Default: If the SCROLL parameter is not specified, the default for the scroll

control is ON.

Primary commands for scrollable fields

These commands apply when the cursor has been placed within a scrollable field:

LEFT Scroll left the specified scroll amount.

RIGHT

Scroll right the specified scroll amount.

ZEXPAND

Display the variable in a dynamic area in a popup window. If the

scrollable field is input then you will be able to update the variable in the

expand window.

 The expand panel displays the variable in a scrollable dynamic area.

Standard up and down scrolling is supported. You can display the variable

in character and hexadecimal using the HEX primary command.

HEX ON/OFF Turn hexadecimal display on and off

The setting will be remembered for subsequent expand processing.

ZCLRSFLD

Clears the contents of the scrollable field to blanks.

If a scroll field is found on the current panel, then the scroll amount will be

honored as for up and down scrolling, where:

PAGE is the equivalent of the length of the display field

DATA is the equivalent of the length of the display field minus 1

HALF is half the length of the display field

CSR will scroll relative to the cursor position

You can enter M in the command line to scroll the maximum distance in the left or

right direction. The maximum right position is the field length minus the display

length. The maximum left position is 1. You can also enter a number in the

command line to specify the number of characters to scroll to the left or right.

)FIELD Section

Chapter 7. Panel definition statement reference 219

Example

Panel source:

)ATTR

 | TYPE(OUTPUT) CAPS(OFF) JUST(ASIS)

 _ TYPE(INPUT) CAPS(OFF) JUST(ASIS)

)BODY

%----------LEFT / RIGHT / Expand Example 1 -------------------------

%OPTION ===>_ZCMD

%

+ Testcase 1

+

+ Field Value Scroll

+ -------------------------------------

+ Value :_SCRFLD |SFIND

+ Left & Right :|SFLIND |SFRIND

+ Left column :_SFLCOL

+ Right column :_SFRCOL

+ Length :_SFLEN

)INIT

 .CURSOR = ZCMD

)FIELD

 FIELD(SCRFLD) LEN(SFLEN)

 LCOL(SFLCOL) RCOL(SFRCOL)

 IND(SFIND) LIND(SFLIND) RIND(SFRIND)

 SCROLL(SFCTL)

)END

REXX to display panel:

/* REXX - Example 1 FOR LEFT/RIGHT/EXPAND PANEL FUNCTIONS */

ARG SFCTL

SCRFLD = ’abcdefghijklmnopqrstuvwxyz’ /* initialize field */

SFLCOL = 3 /* initial left position */

SFLEN = 84 /* initial length */

DO UNTIL RC = 8

 ADDRESS ISPEXEC

 ’DISPLAY PANEL(SFSAMP1)’ /* display panel */

END

Initial panel display:

----------LEFT / RIGHT / Expand Example 1 -------------------------

OPTION ===>

 Testcase 1

 Field Value Scroll

 Value : cdefghijklmn -+

 Left & Right : - +

 Left column : 3

 Right column : 14

 Length : 84

Changing the scroll indicators in the panel definition to:

)FIELD

 FIELD(SCRFLD) LEN(SFLEN)

 LCOL(SFLCOL) RCOL(SFRCOL)

 IND(SFIND,’<>’) LIND(SFLIND,’<’) RIND(SFRIND,’>’)

 SCROLL(SFCTL)

)END

)FIELD Section

220 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Panel definition considerations

The LEFT, RIGHT, and ZEXPAND commands should be included in any keylist

specified for a scrollable field.

changes the panel display to:

----------LEFT / RIGHT / Expand Example 1 -------------------------

OPTION ===>

 Testcase 1

 Field Value Scroll

 Value : cdefghijklmn <>

 Left & Right : < >

 Left column : 3

 Right column : 14

 Length : 84

If PF4 is set to the value ZEXPAND and PF4 is pressed while the cursor is positioned within

the scrollable field, ISPF displays:

┌───────────────────────────────── SCRFLD+0 ──────────────────────────────────┐

│ Line 1 of 2 │

│ Command ===> Scroll ===> CSR │

│ │

│ abcdefghijklmnopqrstuvwxyz │

│ │

│ │

│ │

│ │

│ │

│ │

│ │

│ │

│ │

│ │

│ │

│ │

│ │

└───┘

If the HEX ON primary command is entered, ISPF displays:

┌────────────────────────────── SCRFLD+X’0’(0) ───────────────────────────────┐

│ Line 1 of 2 │

│ Command ===> Scroll ===> CSR │

│ │

│ abcdefghijklmnopqrstuvwxyz │

│ 888888888999999999AAAAAAAA44 │

│ 1234567891234567892345678900 │

│ │

│ │

│ 4444444444 │

│ 0000000000 │

│ │

│ │

│ │

│ │

│ │

│ │

│ │

└───┘

)FIELD Section

Chapter 7. Panel definition statement reference 221

Defining the HELP section

The)HELP section of the panel definition specifies what help panel, if any, is

displayed when help is requested for a particular element defined on the panel.

Help can be requested for a field, an action bar choice, or a pull-down choice by

including a statement in the source panel definition help section. See “Reference

phrase help” on page 96 for a discussion on requesting help for reference phrases.

)HELP FIELD(field-name) [PANEL(help-panel-name) | MSG(msg-name) | PASSTHRU]

where:

FIELD(field-name)

The name of the source panel element (input selection field, action bar choice,

dynamic area name, and so on). When the PANEL keyword is used, a help

panel is displayed when help is requested for an element. When the MSG

keyword is used, a message is displayed when help is requested for an

element. When the PASSTHRU keyword is used, control returns to the dialog

when help is requested for an element. Field-name can be a variable. If the

field-name variable value is not found, the Tutorial table of contents panel

(ISR00003) is displayed.

PANEL(help-panel-name)

The name of the help panel associated with the field. Help-panel-name can be

a variable.

MSG(msg-name)

The name of the message associated with the field. The msg-name can be a

variable. When help is requested on the field that specified MSG(msg-name) in

the)HELP section, the message is displayed. The short message appears in the

upper right corner of the panel. The long message box is placed at the field on

the screen.

PASSTHRU

The PASSTHRU keyword is intended for use on dynamic-area fields. When

help is requested on the field, control returns to the dialog. No help panel or

message is displayed.

Notes:

1. Using the PASSTHRU keyword on reference phrases within scrollable areas

can cause unpredictable results.

2. System variables ZCURFLD and ZCURPOS can be used to determine the

cursor position. You must define a)PANEL section for ZCURFLD and

ZCURPOS to be set.

Specifying the value for the field-name and help-panel-name

When modifying or adding statements to the)HELP section of a new or existing

source panel, you must adhere to these rules to prevent unexpected results and

errors when the source panel is processed.

The field-name and help-panel-name must have these characteristics:

v 1-8 characters in length

v The first (or only) character must be A-Z or a-z

v The remaining characters, if any, must be A-Z, a-z, or 0-9.

Lowercase characters are translated to their uppercase equivalents.

)HELP Section

222 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

The action bar choice and pull-down choice elements have no associated field

name. ISPF uses these conventions when generating a field-name value for these

panel elements:

v Action bar choice field-names have the format ZABCxx, where:

ZABC The field-name prefix

xx The number of the action bar choice
v Pull-down choice field-names have the format ZPDCxxyy, where:

ZPDC The field-name prefix

xx The number of the action bar choice

yy The number of the pull-down choice within this action bar choice

See “Specifying action bar choices in panel)BODY section” on page 161 to

determine the numbering sequence ISPF uses for these panel elements.

Defining the initialization section

The initialization section specifies the initial processing that is to occur before the

panel is displayed.

)INIT

It begins with the)INIT header statement and ends with either the)REINIT,

)PROC,)HELP, or)END header statement. The number of lines allowed in an

)INIT section depends upon the storage size available for panel processing at

execution time.

The variables that are displayed in the panel body reflect the contents of the

corresponding dialog variables after the)INIT section has been processed, just

before the panel is displayed. The input fields are automatically stored into the

corresponding dialog variables immediately following display and before

processing the)PROC section.

See “Formatting panel definition statements” on page 235 for more information.

Defining the LIST section

The)LIST section of the panel definition specifies what list choices appear on your

screen. It can be useful if the selection list is displayed in a scrollable area and

some of the list choices might not be visible. With the)LIST section coded, all of

the choices are built into the list box, drop-down list, or combination box even if

some are not immediately visible in the scrollable area.

It is used in conjunction with the attribute keywords DDLIST(name),

LISTBOX(name), and COMBO(name). These keywords match the list box attributes

to the corresponding list choices found in the)LIST list-name section of the panel.

The)LIST section, if you use it, follows the)PROC section. The)LIST section

contains these parameters when used with list boxes and drop-down lists:

)LIST list-name

VAL(value) CHOICE(value)

)HELP Section

Chapter 7. Panel definition statement reference 223

The)LIST section contains these parameters when used with combination boxes:

)LIST list-name

CHOICE(value)

where:

list-name

The name of the list. It must match a LISTBOX(name), DDLIST(name), or

COMBO(name) specified on an input field in the)ATTR section. The name can

be 1 to 8 characters long. Alphanumeric characters A-Z, a-z, 0-9, #, $, or @ can

be used in the name, but the first character cannot be numeric. Lowercase

characters are converted to their uppercase equivalents.

VAL(value)

This parameter is used for list boxes and drop-down lists only. It is not used

for combination boxes. The value can be a variable or text. It must be 3

characters or less (more than three characters are truncated without warning)

and is used as the value placed into the CEF field when the choice is selected.

CHOICE(value)

This parameter is used with list boxes, drop-down lists, and combination

boxes. The value can be a variable or text. If the value is a variable, the

ampersand (&) must be in the first column following the left parenthesis of the

CHOICE keyword. The length of the variable data is limited to 99 single-byte

characters. If the variable data is longer than 99 bytes, it will be truncated.

CHOICE(&var)

If the value is a single word text string it is not necessary to enclose it in single

quotation marks.

CHOICE(3278)

If the value is more than a single word of text, the phrase must be enclosed in

single quotation marks.

CHOICE(’3278 terminal type’)

Literal values can be split between lines by coding a plus sign (+) as the last

character on each line that is to be continued. The plus sign is used as a

continuation character.

CHOICE(’This is an example of a continuation +

of the literal string’)

The)LIST section must contain a list-name. For list boxes and drop-down lists, it

also must contain a VAL and a CHOICE for each of the choices to display in the

list. Each entry in the)LIST section must contain the keywords in this order:

VAL(value) CHOICE(value). For combination boxes, the list section must contain a

CHOICE(value) for each of the choices to display in the list. The data in the lists is

displayed in the order in which you define the choices in the)LIST section.

Defining the model section

The)MODEL section defines how each table row is to be formatted. Because the

model section is used only for table display panels, it is discussed in Defining table

display panels—see “Requirements for model section” on page 139.

)LIST Section

224 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Defining the panel section

The)PANEL section specifies the keylist that will be used for the panel, identifies

where the keylist is to be found, controls specific CUA display characteristics of the

panel, specifies the image that will be used on the panel, and specifies the row and

column placement for the upper left corner of the image.

The IMAGE keyword is used to show images on panels in GUI mode. It is ignored

in 3270 mode. ISPF supports image files in the Graphical Interchange Format (GIF).

ISPF ships image files in sample library SISPSAMP. The panel ISR@PRIM uses

three of the GIF image files: ISPFGIFL, ISPFGIFS, and ISPEXIT.

To use images, store the image files on the host in a partitioned data set and

allocate this image data set to ddname ISPILIB before invoking ISPF. For more

information about allocating this image library, see ″Allocating Optional Image

ISPF Library″ in the z/OS ISPF User’s Guide Vol I.

Images can be placed on unused panel space. They should not be positioned on

text or panel fields. When an image is requested, ISPF does a query and file

transfer to download the image specified to the workstation. The image is

downloaded to the image path, which the user specifies from the GUI Panel Settings

window (Option 0). See the z/OS ISPF User’s Guide Vol II for details. If no image

path is specified, ISPF downloads the images to the workstation’s working

directory.

)PANEL [KEYLIST (keylist-name[,keylist-applid,SHARED])]

[IMAGE (image-name,row,col)]

where:

KEYLIST

keylist-name

Required when KEYLIST is specified. The keylist name must have these

characteristics:

v 1-8 characters in length

v First, or only, character must be A-Z or a-z

v Remaining characters, if any, must be A-Z, a-z, or 0-9.

Lowercase characters are translated to their uppercase equivalents.

keylist-applid

Optional. Application ID used at run time to find the keylist. It has a

maximum length of 4 characters, the first of which must be alphabetic.

Any remaining characters can be alphabetic or numeric.

SHARED

Optional. When specified, ISPF looks only at the shared keylist for the

panel. If the user issues the KEYLIST OFF or KEYLIST PRIVATE

commands, they have no effect; the keylist in xxxxKEYS table allocated to

ISPTLIB is used.

IMAGE

image-name

Required when IMAGE is specified. The image-name identifies the image

to be displayed. The image-name can be a variable, which should follow

ISPF’s variable naming conventions.

)PANEL Section

Chapter 7. Panel definition statement reference 225

Note: ISPF downloads images only in panel initialization processing.

Variables for images should only be set in the)INIT section of your

panel definition. Variables for images in panel sections other than

the)INIT section are not supported unless the image exists on the

PC Image Path you specify.

row,col

The row and column specify the starting position, upper left corner, of the

image. The row and column can be numeric or variables. Variables for the

row and column should follow ISPF’s variable naming conventions. If no

row or column is specified, you must code commas as place holders, and

the row and column will default to 0,0. For example:

 IMAGE(imagea,,)

It is left to the dialog developer to select appropriate row and column

values such that the image will display. ISPF checks for valid numeric

values 0-9, but does not check for any limits.

When a keylist-name is specified without a keylist-applid, ISPF searches for the

named keylist in the:

v Keylists for the application ID that is currently running

v ISP applid (if not found in application ID that is currently running and the name

of the application ID is not ISP).

If the KEYLIST keyword is not found on the)PANEL statement, then the default

keylist, ISPKYLST, is used.

Before runtime processing, any keylist (other than the default ISPKYLST)

referenced in a panel’s definitions must have been created and stored. If you add

or modify the)PANEL KEYLIST statement in the definition of an existing source

panel, you must create the keylist if it does not already exist. New keylists can be

created using ISPF option 0 or using the Dialog Tag Language.

Keylist variables

These variables are used by the keylist function:

ZKLUSE Y or N, this variable indicates whether the keylists are being used

for an application ID or not. For example, if KEYLIST OFF has

been issued, &ZKLUSE is N. This variable is stored in the

application profile. The VPUT service can be used by your

application to set this value. Putting a value of N in &ZKLUSE to

the profile pool is equivalent to issuing the KEYLIST OFF

command. Putting a value of Y in &ZKLUSE to the profile pool is

equivalent to issuing the KEYLIST ON command.

ZKLNAME contains the name of the keylist of the panel currently being

displayed. If no keylist is defined for the panel or the keylist is not

being used, &ZKLNAME is blank.

ZKLAPPL contains the application ID where the keylist of the panel currently

being displayed is found. If no keylist is defined for the panel or

the keylist is not being used, &ZKLAPPL is blank.

ZKLTYPE P or S, this variable indicates that the keylist for the panel

currently being displayed is a private (P) copy defined in the

profile table, or a shared (S) copy defined in the xxxxKEYS table

(where xxxx is the application ID of the keylist (ZKLAPPL)).

ZKLPRIV Y or N, this variable indicates that ISPF is to look at both the

private and shared keylist (Y, the default) or that it is to look at

only the shared keylists (N). This variable is stored in the

)PANEL Section

226 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

application profile. The VPUT service can be used by the

application to set this value. Putting a value of N in &ZKLPRIV to

the profile pool is equivalent to issuing the KEYLIST SHARED

command. Putting a value of Y in &ZKLPRIV to the profile pool is

equivalent to issuing the KEYLIST PRIVATE command.

Note: This variable shows and determines where ISPF looks for a

keylist. &ZKLTYPE is a non-modifiable variable that shows

where ISPF found the keylist.

CUA display characteristics

The)PANEL section controls specific CUA display characteristics of a panel.

Specifying the)PANEL statement in the panel source definition affects the same

display characteristics controlled by selecting the Panel display CUA mode option

on the ISPF Settings panel (Option 0). See the z/OS ISPF User’s Guide Vol II for

more information.

The)PANEL statement controls these CUA display characteristics:

v Display and placement of the command line and long message text

v Building and display of the named keylist in the Function Key Area (FKA)

v Handling of undefined or null function key definitions

v Execution of the CANCEL and EXIT commands

v Setting of three system control variables that relate to the position of the cursor

after panel display.

Command lines and long messages

When the)PANEL section is used, the ISPF default command line placement is at

the bottom of the panel (above the function key area, if it is displayed). Long

messages are displayed above the command line. To override the ISPF default, go

to the ISPF Settings panel and specify Command line placement - ASIS. This

setting places the command line and long message as they are specified in your

panel definition (usually at the top of the panel). See z/OS ISPF User’s Guide Vol I.

Changes to the)BODY section also affect command line and long message

placement. The ASIS keyword on the)BODY section overrides ISPF defaults. The

WINDOW keyword also affects the displaying of the command line and long

messages. See “Defining the body section” on page 209.

You can specify to not have a command line by including the keyword CMD()

with no value on the)BODY statement. This is valid only for displaying panels

with the DISPLAY service. In this case, the default position of the long message is

at the bottom of the panel above the FKA, if it is displayed. Panels (tables)

displayed with the TBDISPL service must specify a command area either by coding

a CMD() with a value or by coding the system control variable ZCMD in the panel

body.

Because the)PANEL statement affects the same display characteristics as if you

had selected the Panel display CUA mode option on the ISPF Settings panel, the

color and intensity of the short and long messages is affected by the presence of

the)PANEL statement. If you specify the LMSG or SMSG keywords on the)BODY

statement, you control the color and intensity in which both the short and long

messages are displayed, regardless of CUA mode or the presence of a) PANEL

statement. Table 21 on page 313 illustrates default message placement.

)PANEL Section

Chapter 7. Panel definition statement reference 227

Keylist building and display

The format and display of the named keylist or an ISPF default keylist for a panel

containing the)PANEL statement is as follows:

v The maximum number of function keys that can be formatted on each line is

displayed.

v Each displayed function key definition appears as Fnn=label or Fn=label (where

nn or n is the numeric value of the function key).

ISPF attempts to build the FKA with the named keylist or an ISPF default keylist.

However, the display of the keylist in the FKA area depends upon the settings of

the FKA or PFSHOW commands and the keylist format (SHORT or LONG)

specified for the function key definition. The number and set of function keys

displayed also varies.

Note: The system control variable ZPFCTL setting is ignored for panel source

definitions that contain the)PANEL statement.

Undefined or null function keys

When you press an undefined or null function key, ISPF displays an error message.

CANCEL and EXIT execution

When the CANCEL or EXIT commands (specified on a function key or entered in a

command field) are processed, ISPF returns the entered command in the system

control variable ZVERB and sets a return code of 8 from the display service.

If the panel contains an action bar and the cursor is on the action bar, CANCEL

moves the cursor to the panel body. ZVERB is not updated.

Setting system control variables

When panels with a)PANEL section specified are displayed, ISPF sets these system

control variables:

ZCURFLD Name of the field (or list column) containing the cursor when the

user exits the panel.

ZCURPOS Position of the cursor within the field specified by ZCURFLD

when the user exits the panel.

ZCURINX Current row number of the table row containing the cursor.

These system variables are stored in the function pool as output variables.

Defining the point-and-shoot section

The)PNTS (point-and-shoot) section of a panel definition specifies what fields, if

any, are point-and-shoot fields. Input and output fields are specified as

point-and-shoot fields by the use of the attribute keyword, PAS(ON). Text fields are

specified as point-and-shoot fields by the attribute type keyword, TYPE(PS). For

each panel field specified as a point-and-shoot field, there must be a corresponding

entry in the)PNTS section. If a field specified as a point-and-shoot field has no

corresponding entry in the)PNTS section, no action will be taken if the

point-and-shoot field is selected. The examples show a)PNTS section

point-and-shoot phrase definition for input/output fields and for text fields.

Note: You can use option 0 (Settings) to set the tab key to move the cursor

point-and-shoot fields. This changes output fields to input fields, but data is

not altered. However, if a variable is used on an output field that is changed

to an input field by the tab to point-and-shoot option, and the variable is

)PANEL Section

228 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

VDEFINEd to the application, the variable will be truncated. In this case, the

application developer should have a temporary panel variable.

GUI mode

If you are running in GUI mode, fields designated as point-and-shoot output and

text fields will appear as pushbuttons. Point-and-shoot input fields will appear as

selection fields.

Large pushbuttons are point-and-shoot output or text fields which display with a

depth greater than one. Large pushbuttons are built by coding the DEPTH

keyword on the point-and-shoot statement in the)PNTS panel section.

In GUI mode, images can be displayed on these pushbuttons. The keywords that

provide the support for images are DEPTH, IMAGE, IMAGEP, TEXT, and PLACE.

These keywords are used in GUI mode and ignored in 3270 mode.

Although you can define images on point-and-shoot output fields and

point-and-shoot text fields, if you define an image for a point-and-shoot output

field, the field cannot be a Z-variable in the panel body.

You can specify where to place an image on a large pushbutton. It can be above

the pushbutton text, or to the left or right of the pushbutton text. When you

specify the placement of the image to be above the text, the image is always

centered relative to the text.

ISPF ships sample images in sample library SISPSAMP. The panel ISR@PRIM uses

three of the GIF image files: ISPFGIFL, ISPFGIFS, and ISPEXIT.

To use images, store the image files on the host in a partitioned data set and

allocate this image data set to ddname ISPILIB before invoking ISPF. For more

information about allocating this image library see ″Allocating Optional Image

ISPF Library″ in the z/OS ISPF User’s Guide Vol I.

When an image is requested, ISPF does a query and file transfer to download the

image specified to the workstation. The image is downloaded to the image path that

you specify from the GUI Panel Settings window (Option 0). See the z/OS ISPF

User’s Guide Vol II for details. If no image path is specified, ISPF downloads the

image to the workstation’s working directory.

)PNTS

FIELD(field_name|ZPSxxyyy) VAR(value) VAL(value)

[DEPTH(depth)] [IMAGE(image-name)] [IMAGEP(image-name)]

[TEXT(’text’)] [PLACE(a,b,l,r)]

Note: Each entry in the)PNTS section must contain the keywords in this order:

FIELD, VAR, VAL, [DEPTH]. When defining large pushbuttons or large

pushbuttons with images the DEPTH keyword must immediately follow the

VAL keyword on the)PNTS entry statement. The remaining keywords,

[IMAGE] [IMAGEP], [TEXT], [PLACE], follow the DEPTH keyword. Both

the DEPTH keyword and the TEXT keyword must be coded on the PNTS

entry for point-and-shoot text fields if you are defining a large pushbutton,

or an image for the field.

where:

)PNTS Section

Chapter 7. Panel definition statement reference 229

FIELD(field_name|ZPSxxyyy)

The name of the field on the panel that this statement controls.

 For point-and-shoot input/output fields, the format is:

FIELD(field_name)

where:

field_name

The name of the field on the panel that this statement controls.

 For point-and-shoot text fields, the format is:

FIELD(ZPSxxyyy)

where:

xx 00 for a point-and-shoot field defined in the)BODY section and 01

to 99 for the number of the scrollable area in which the

point-and-shoot text field is defined.

 Each scrollable area is assigned a sequential number based on its

relative position within the panel body. The scrollable area closest

to the upper-left corner of the panel body is assigned number 01.

Each additional scrollable area, scanning left to right, top to

bottom, is assigned the next sequential number. A maximum of 99

scrollable areas in any given panel can contain point-and-shoot text

fields.

yyy 001 to 999 for the relative number of the point-and-shoot text field

within the panel body or within a particular scrollable area.

 A point-and-shoot text field can wrap around multiple terminal

lines in panels that are not displayed in a window. A

point-and-shoot text field that logically wraps in a pop-up window

requires the beginning of each wrapped line to contain a PS field

attribute and an entry must exist in the)PNTS section for each

wrapped line. This is also true for panels containing the

WINDOW() keyword that are not displayed in a pop-up window.

The additional)PNTS section entries should result in the same

action as the first line of the wrapped text field.

VAR(value)

The name, or a variable containing the name, of the variable to be set

when the field named in this)PNTS statement is selected. If the value is a

variable, an ampersand (&) must be in the first column following the left

parenthesis of the VAR keyword, and it must follow dialog variable

naming conventions. If the value is a variable it is limited to the leading

ampersand plus 7 characters.

VAL(value)

The value assigned to the variable named in this statement. The value can

be a variable or text. If the value is a variable, an ampersand (&) must be

in the first column following the left parenthesis of the VAL keyword. The

length of the variable data is limited to 255 single-byte characters. If the

variable data is longer than 255 bytes, it is truncated. If the value is a

variable it is limited to the leading ampersand plus 7 characters.

VAL(&var)

If the value is a single word text string it is not necessary to enclose it in

single quotation marks.

VAL(Batch)

)PNTS Section

230 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

If the value is more than a single word of text, the phrase must be

enclosed in single quotation marks.

VAL(’List of products’)

Literal values can be split between lines by coding a plus sign (+) as the

last character on each line that is to be continued. The plus sign is used as

a continuation character.

VAL(’This is an example of a continuation +

of the literal string’)

DEPTH(depth)

The depth of the point-and-shoot field (pushbutton). The DEPTH keyword

is required and must be specified immediately following the VAL keyword

on the)PNTS section statement. ISPF allows depth values from zero to

sixty-two (0-62). The maximum screen depth is 62. It is up to the dialog

developer to define the depth such that other items on the panel body will

not be overlaid by the point-and-shoot field (pushbutton). If depth is

specified as 0, the default depth of two (2) is used. The depth can be a

variable, whose value is from 0-62.

IMAGE(image-name)

The image-name identifies the image to be displayed. The image-name is

used when the images are stored on the host in a partitioned data set, with

a data set definition of ISPILIB. The image-name must follow TSO data set

member naming conventions. The image-name can be a variable, which

should follow ISPF’s variable naming conventions.

IMAGEP(image-name)

The image-name identifies the image to be displayed, when the

point-and-shoot pushbutton is pressed. For example, a pushbutton might

normally display a closed door image, but when you press the button, an

’open door’ image appears. The image-name is used when the images are

stored on the host in a partitioned data set, with a data set definition of

ISPILIB. The image-name must follow TSO data set member naming

conventions. The image-name can be a variable, which should follow ISPF’s

variable naming conventions.

Note: ISPF downloads images only in panel initialization processing.

Variables for images should only be set in the)INIT section of your

panel definition. Variables for images in panel sections other than

the)INIT section are not supported unless the image exists on the

PC Image Path you specify.

TEXT(’text’)

The TEXT keyword is required for point-and-shoot text fields. The text ties

the point-and-shoot text field defined in the panel body with its

point-and-shoot entry in the)PNTS section. The text must match the text

for the point-and-shoot field in the body. If the text in the body contains

variables, the text of the TEXT keyword must allow for the possible

expansion once the variable has been substituted, just as the

point-and-shoot text field in the body should. If the text consists of more

than a single word of text, the phrase must be enclosed in single quotation

marks.

PLACE(a|b|l|r)

The values a (above), l (left), and r (right) specify the position of the image

relative to the pushbutton text. The PLACE keyword is optional. If not

specified, the default image position is above (a) the text in the pushbutton.

)PNTS Section

Chapter 7. Panel definition statement reference 231

The text for pushbuttons is always centered within the pushbutton. The

text for a pushbutton does not wrap, thus one line of text is the maximum.

The image is placed either above the text, or to the left or the right of the

text. It is up to the dialog developer to allow for space for the pushbutton

text and the image. The value for PLACE can be a variable whose value is

a, b, l, or r.

Defining the processing section

The processing section specifies additional processing that is to occur after the

panel has been displayed. It begins with the)PROC header statement and ends

with the)HELP or)END statement. The number of lines allowed in a)PROC

section depends upon the storage size available.

)PROC

A statement can be continued over as many lines as necessary as long as it is

broken at the end of a word, or a continuation symbol (+) is used within a literal.

In menus, the processing section is required and must be in a special format, as

described in “Defining menus” on page 117.

See “Formatting panel definition statements” on page 235 for additional

information.

Example:

)PANEL

)ATTR

 $ TYPE(PIN)

 } TYPE(PS)

 + TYPE(NT)

 | AREA(SCRL) EXTEND(ON)

 ! TYPE(OUTPUT) PAS(ON) COLOR(RED)

 * TYPE(OUTPUT) PAS(ON) COLOR(BLUE)

 @ TYPE(TEXT) INTENS(LOW) COLOR(RED) PAD(NULLS)

 ø TYPE(TEXT) INTENS(LOW) COLOR(BLUE) PAD(NULLS)

)BODY WINDOW(60,23)

$

%COMMAND ===>_ZCMD

$

$ Press }DEFAULTS$to reinstate defaults

$

+

|S1 |

)AREA S1

+ +

+ +

+ øBLUE *BLUE1 +

+ @RED!RED1 +

)INIT

 .CURSOR = blue1

 &blue1 = ’ ’

)PROC

 REFRESH(*)

)PNTS

 FIELD(BLUE1) VAR(RED1) VAL(RED)

 FIELD(ZPS00001) VAR(BLUE1) VAL(DEFAULT)

)END

Figure 64. Sample point-and-shoot definition

)PNTS Section

232 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Defining the reinitialization section

The reinitialization section specifies processing that is to occur prior to redisplay of

a panel. If it is present, it follows the initialization section and precedes the

processing section.

)REINIT

Panel redisplay occurs in either of these situations:

v Redisplay occurs automatically after the)PROC section has been processed if the

.MSG control variable is nonblank and the user has not requested END or

RETURN. The .MSG control variable is set automatically if a translation or

verification error occurs. It can also be set explicitly by use of an assignment

statement in the)PROC section.

v Redisplay occurs if a dialog function invokes the DISPLAY or TBDISPL service

with no panel name specified (a blank).

Note: See z/OS ISPF Services Guide under the description of TBDISPL for a

explanation of how redisplay processing for the TBDISPL service differs

from that for the DISPLAY service described here.

Processing of the)INIT section is intentionally bypassed when a redisplay occurs.

Instead, the)REINIT section is processed. The automatic fetching of variables to be

displayed in the panel body is also bypassed on a redisplay. Thus, the panel is

redisplayed exactly as the user last saw it, except:

v An error message can appear on a redisplay.

v Field attribute overrides, assignment statements, or REFRESH statements can be

used.

v A scrollable area can be scrolled to position the cursor or to verify failure.

Typically, a)REINIT section contains:

v Field attribute overrides, specified by the .ATTR control variable

v Changes to displayed panel fields, specified by assignment statements and the

REFRESH statement.

See “Formatting panel definition statements” on page 235 for additional

information.

Figure 65 on page 234 shows panel processing and the point at which attribute

settings can be modified for redisplay of a panel.

)REINIT Section

Chapter 7. Panel definition statement reference 233

Figure 65. Panel processing

)REINIT Section

234 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Formatting panel definition statements

This topic describes panel definition statements:

v Assignment statements. See “The assignment statement.”

Note: You can use ten built-in functions in an assignment statement:

– TRUNC (truncate)

– TRANS (translate)

– PFK (function key)

– LENGTH (return length of variable)

– UPPER (return uppercase value of variable)

– LVLINE (last visible line)

– ADDSOSI (add shift-out character)

– DELSOSI (delete shift-out character)

– ONEBYTE (convert to a 1-byte code)

– TWOBYTE (convert to a 2-byte code)
v ELSE on page “The ELSE statement” on page 242

v EXIT on page “EXIT and GOTO statements” on page 244

v GOTO on page “EXIT and GOTO statements” on page 244

v IF on page “The IF statement” on page 246

v PANEXIT on page “The PANEXIT statement” on page 250

v REFRESH on page “The REFRESH statement” on page 257

v *REXX ... *ENDREXX on page “The *REXX statement” on page 258

v TOG on page “The TOG statement” on page 266

v VEDIT on page Figure 72 on page 268

v VER on page “The VER statement” on page 268

v VGET on page “The VGET statement” on page 280

v VPUT on page “The VPUT statement” on page 282

These types of data references can appear within panel section statements:

Dialog variable

A name preceded by an ampersand (&)

Control variable

A name preceded by a period (.)

Literal value

A character string not beginning with an ampersand or period. A literal

value can be enclosed in single quotes (‘’). It must be enclosed in single

quotes if it begins with a single ampersand or a period, or if it contains

any of these special characters:

Blank < (+ |) ; ¬ - , > : =

A literal can contain substitutable variables, consisting of a dialog variable name

preceded by an ampersand (&). The name and ampersand are replaced with the

value of the variable before processing the statement. Trailing blanks are removed

from the variable before the replacement. You can use a double ampersand to

specify a literal character string starting with, or containing, an ampersand.

In the description of statements and built-in functions that follows, a variable can

be either a dialog variable or a control variable. A value can be either type of

variable or a literal value.

The assignment statement

Assignment statements can be used in the)INIT section to set the contents of

dialog variables before the automatic initialization of variables in the panel body.

panel definition statements

Chapter 7. Panel definition statement reference 235

Also, they can be used in the)REINIT section before redisplay of the panel body.

Assignment statements can also be used in the)PROC section, typically to set the

contents of dialog variables that do not correspond to fields in the panel body.

 variable = value

where:

value

Specifies the contents of the dialog variable.

Example:

&A = ‘’

&COUNT = 5

&DSN = ‘’‘SYS1.MACLIB’‘’

&BB = &C

The first example sets variable A to blanks. The second example sets variable

COUNT to a literal character string (the number 5). The third example sets variable

DSN to a character string that begins and ends with a single quote. See Chapter 6,

“Panel definition statement guide” for information about syntax rules and

restrictions. The fourth example sets variable BB to the contents of another

variable, C.

The literal ’ ’ represents a single blank. To define a null, you must use the &Z

literal.

The TRUNC built-in function

The TRUNC built-in function can occur on the right side of an assignment

statement to cause truncation.

 variable = TRUNC (variable,value)

where:

variable

(Inside the parentheses). Specifies the variable to be truncated.

value

A numeric quantity indicating the length of the truncated result or any special

character indicating truncation at the first occurrence of that character.

Examples:

&A = TRUNC (&XYZ,3)

&INTEG = TRUNC (&NUMB,‘.’)

In the first example, the contents of variable XYZ are truncated to a length of 3

characters and stored in variable A. Variable XYZ remains unchanged. In the

second example, the contents of variable NUMB are truncated at the first

occurrence of a period and stored in variable INTEG. Variable NUMB remains

unchanged. If NUMB contains 3.2.4, INTEG contains 3.

The control variable .TRAIL contains the remainder following a TRUNC operation.

When the contents of a variable are truncated to a specified length, all remaining

characters are stored in .TRAIL. If the contents of a variable are truncated at the

first occurrence of a special character, the remaining characters following the special

assignment statement

236 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

character are stored in .TRAIL. The special character is not stored, nor is it retained

in the assignment variable’s value. For example:

)PROC

 &AAA = TRUNC (&ZCMD, ‘.’)

 &BBB = .TRAIL

If variable ZCMD contains 9.4.6, variable AAA contains 9. The .TRAIL control

variable and variable BBB contain 4.6. The value of ZCMD remains as 9.4.6.

Because the control variable .TRAIL is set to blanks before the truncation function

is performed, it should not be specified as the truncation variable in the TRUNC

statement. For example: &ERROR = TRUNC(.TRAIL,1) would always result in

&ERROR being set to blank.

For the TRUNC built-in function, the source and destination variables can be the

same. Figure 66 on page 239 shows an example in which it is assumed that

variable TYPECHG was originally set (in the dialog function) to a single character

N, U, or D. In the)INIT section, TYPECHG is translated to NEW, UPDATE, or DELETE

and stored into itself before the panel is displayed. In the)PROC section,

TYPECHG is truncated back to a single character.

Use of this technique allows you to change the valid options for TYPECHG by

simply typing over the first character.

The TRUNC and TRANS built-in functions can be nested. For example:

&XYZ = TRUNC(TRANS(&A ---),1)

&ZSEL = TRANS(TRUNC(&ZCMD,‘.’) ---)

In the first example, the current value of variable A is translated. The translated

value is then truncated to a length of one, and the result is stored in variable XYZ.

In the second example, the contents of variable ZCMD are truncated at the first

period, the truncated value is then translated, and the result is stored in variable

ZSEL.

The VSYM built-in function can be nested on the TRANS and TRUNC built-in

functions. For example:

&B = TRANS(VSYM(A) A,1 B,2 *,3)

&B = TRANS(TRUNC(VSYM(A),1) A,1 B,2 *,3)

The TRANS built-in function

The TRANS built-in function can occur on the right side of an assignment

statement to cause translation.

 variable = TRANS (variable value,value[MSG=value])

where:

variable

(Inside the parentheses). Specifies the variable to be translated.

value,value

Paired values. The maximum number of paired values allowed is 126. The first

value in each pair indicates a possible value of the variable, and the second

indicates the translated result.

 Example:

&REPL = TRANS (&MOD Y,YES N,NO)

assignment statement

Chapter 7. Panel definition statement reference 237

|
|

|
|

|

The current value of variable MOD is translated, and the result is stored in

variable REPL. Variable MOD remains unchanged. The translation is as

follows: if the current value of MOD is Y, it is translated to YES. If the current

value is N, it is translated to NO. If the current value is anything else (neither Y

nor N), it is translated to blank.

 The anything-else condition can be specified by using an asterisk in the last set

of paired values. For example:

&REPL = TRANS (&MOD ... *,‘?’)

&REPL = TRANS (&MOD ... *,*)

In the first example, if the current value of MOD does not match any of the

listed values, a question mark is stored in variable REPL. In the second

example, if the current value of MOD does not match any of the listed values,

the value of MOD is stored untranslated into REPL.

MSG=value

A message ID. Another option for the anything-else condition is to cause a

message to be displayed to the user. Typically, this technique is used in the

processing section of the panel definition.

 Example:

&DISP = TRANS (&D 1,SHR 2,NEW 3,MOD MSG=PQRS001)

The contents of variable D are translated as follows: 1 is translated to SHR, 2 is

translated to NEW, and 3 is translated to MOD. If none of the listed values is

encountered, message PQRS001 is displayed. Message PQRS001 can be an error

message indicating that the user has entered an invalid option.

For the TRANS built-in function, the source and destination variables can be the

same. Figure 66 on page 239 shows an example in which it is assumed that

variable TYPECHG was originally set (in the dialog function) to a single character

 N, U, or D. In the)INIT section, TYPECHG is translated to NEW, UPDATE, or DELETE

and stored into itself before display of the panel. In the)PROC section, TYPECHG

is truncated back to a single character.

Use of this technique allows you to change the valid options for TYPECHG by

simply typing over the first character.

The TRANS and TRUNC built-in functions can be nested. For example:

&XYZ = TRUNC(TRANS(&A ---),1)

&ZSEL = TRANS(TRUNC(&ZCMD,‘.’) ---)

In the first example, the current value of variable A is translated. The translated

value is then truncated to a length of one, and the result is stored in variable XYZ.

In the second example, the contents of variable ZCMD are truncated at the first

period, the truncated value is then translated, and the result is stored in variable

ZSEL.

The VSYM built-in function can be nested on the TRANS and TRUNC built-in

functions. For example:

&B = TRANS(VSYM(A) A,1 B,2 *,3)

&B = TRANS(TRUNC(VSYM(A),1) A,1 B,2 *,3)

assignment statement

238 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

|
|

|
|

|

The PFK built-in function

The PFK built-in function provides function key assignment information by

command or key number.

 variable = PFK(value)

where:

value

Either a command or a key number.

Example:

&X = PFK (HELP)

&Y = PFK (2)

In the first example, the first function key that is assigned to the HELP command

is returned in variable X as a character string PFnn, where nn is the function key

number. If CUA mode is set, or the panel has an active keylist, the character string

is Fnn, where nn is the function key number. If the HELP command is not assigned

to a function key, a blank value is returned.

In scanning the current function key definitions, the primary keys are scanned first,

then the secondary keys. If KEYLIST OFF has been issued, ISPF searches the ZPF

variables. On a 24-key terminal, for example, if both function keys 13 and 1 are

assigned to HELP, the function returns F13.

In the second example, the command assigned to F2 is returned in variable Y. If no

command is assigned to the key requested, a blank value is returned.

)Body

%---------------------------- EMPLOYEE RECORDS -------------------------------

%COMMAND===>_ZCMD %

+

%EMPLOYEE SERIAL: &EMPSER

+

+ TYPE OF CHANGE%===>_TYPECHG + (NEW, UPDATE, OR DELETE)

+

+ EMPLOYEE NAME:

+ LAST %===>_LNAME +

+ FIRST %===>_FNAME +

+ INITIAL%===>_I+

+

+ HOME ADDRESS:

+ LINE 1 %===>_ADDR1 +

+ LINE 2 %===>_ADDR2 +

+ LINE 3 %===>_ADDR3 +

+ LINE 4 %===>_ADDR4 +

+

+ HOME PHONE:

+ AREA CODE %===>_PHA+

+ LOCAL NUMBER%===>_PHNUM +

+

)Init

 &TYPECHG = Trans (&TYPECHG N,NEW U,UPDATE D,DELETE)

)Proc

 &TYPECHG = Trunc (&TYPECHG,1)

)End

Figure 66. Sample panel definition with TRANS and TRUNC

assignment statement

Chapter 7. Panel definition statement reference 239

The LENGTH built-in function

The LENGTH built-in function can occur on the right side of an assignment

statement to evaluate the length of a dialog variable. The variable length returned

will be the maximum value of the actual length of the variable if it exists and the

length specified in the)FIELD section if any.

 variable = LENGTH(field-name)

where:

field-name

Specifies the dialog variable name.

 Example

&A = LENGTH(ABC)

The length of dialog variable ABC is stored in &A. If ABC does not exist, zero is

returned. If we added this section to the panel:

)FIELD

 FIELD(ABC) LEN(105)

then the length calculated for &A will be 105 if ABC does not exist or exists with a

length less than 105.

The UPPER built-in function

The UPPER built-in function can occur on the right side of an assignment

statement and will return the uppercase value of a variable.

 variable = UPPER(field-name)

where:

field-name

Specifies the dialog variable name.

 Example

&A = UPPER(ABC)

The uppercase value of ABC dialog variable will be returned.

The LVLINE built-in function

The LVLINE built-in function (used on an assignment statement in the)INIT,

)REINIT, or)PROC section) provides the line number of the last visible line within

a graphic or dynamic area of the currently displayed panel.

 variable = LVLINE(value)

where:

value

Name of the GRAPHIC or DYNAMIC area. In split-screen mode, this value

could be less than the number of lines defined in the area.

This built-in function provides the line number of the last line within a graphic or

dynamic area that is visible to the user on the currently displayed panel. The value

assignment statement

240 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

parameter is the name of the graphic or dynamic area. In split-screen mode, this

value could be less than the number of lines defined in the area. If the area is

defined within a scrollable area, the number returned is the last visible line when

the user submitted the panel, even if the user could have scrolled to see more.

Note: When coding the command line after the dynamic area on a non-TBDISPL

panel, ISPF might not be able to calculate the LVLINE value correctly based

on the location of the command line following the dynamic area, the

number of lines after the dynamic area, the function key settings, SPLIT or

SPLITV command processing, or other ISPF commands that affect the screen

size displayed. To achieve the correct LVLINE value with the command line

displayed at the bottom of the ISPF dynamic area panel, the command line

will have to be coded above the dynamic area on the panel, ZPLACE set to

BOTTOM, and CUA mode set to YES.

Example:

&L1 = LVLINE(AREA1)

The ADDSOSI and DELSOSI built-in functions

These built-in functions are used to add to or delete from a value-string the

shift-out and shift-in characters that mark the start and end of a DBCS field,

without changing the value of the input string.

 variable = ADDSOSI(variable name)

variable = DELSOSI(variable name|DBCS literal)

where:

variable name

Name of the variable that the function will process.

Examples:

&VAR2 = ADDSOSI(&VAR1)

&VAR2; = DELSOSI(‘[DBDBDBDB]’)

The bracket characters [and] represent the shift-out and shift-in characters.

The target variable must not contain mixed (DBCS/EBCDIC) data. Only variables,

not literals, can be specified with the ADDSOSI function. Variables or literals can

be specified with the DELSOSI function. An odd input-value length is not

permitted for either function. The input-value length does not include trailing

blanks or nulls. Nested built-in functions are not allowed on the DELSOSI

function. The ADDSOSI function allows nesting of the TWOBYTE built-in function

(see “The ONEBYTE and TWOBYTE built-in functions”).

Example:

&VARB = ADDSOSI(TWOBYTE(&VARA))

Variable VARA is converted to a 2-byte character code and shift-out and shift-in

characters are added to the character string. Then, variable VARB is set to the

resulting value.

The ONEBYTE and TWOBYTE built-in functions

The ONEBYTE function is used to convert a variable from a 1-byte character code

to the corresponding 1-byte code without changing the value of the variable. The

TWOBYTE function is used to convert a variable from a 1-byte character code to

assignment statement

Chapter 7. Panel definition statement reference 241

the corresponding 2-byte code without changing the value of the variable.

 variable = ONEBYTE(variable name)

variable = TWOBYTE(variable name)

where:

variable name

Name of the variable the function will process.

Examples:

&VARA = ONEBYTE(&VARB)

&VARA = TWOBYTE(&VARB)

The variable being converted must not contain mixed (DBCS/EBCDIC) data. Only

variables, not literals, can be converted. An odd input value length is permitted for

the TWOBYTE function, but is not permitted for the ONEBYTE function. The input

value length does not include trailing blanks or nulls. Literals cannot be used as

input parameters for either function. Nested built-in functions are not allowed on

the TWOBYTE function. The ONEBYTE function allows nesting of the DELSOSI

built-in function.

Example:

&VARB = ONEBYTE(DELSOSI(&VARA))

The VSYM built-in function

The VSYM built-in function can appear on the right side of an assignment

statement and returns the value of a dialog variable found in the function pool

with all the system symbols resolved.

 variable = VSYM(field-name)

where:

field-name

Specifies the dialog variable name.

Examples:

&VARA = ONEBYTE(&VARB)

&VARA = TWOBYTE(&VARB)

The variable being converted must not contain mixed (DBCS/EBCDIC) data. Only

variables, not literals, can be converted. An odd input value length is permitted for

the TWOBYTE function, but is not permitted for the ONEBYTE function. The input

value length does not include trailing blanks or nulls. Literals cannot be used as

input parameters for either function. Nested built-in functions are not allowed on

the TWOBYTE function. The ONEBYTE function allows nesting of the DELSOSI

built-in function.

Example:

&A = VSYM(ABC)

The ELSE statement

The ELSE statement specifies that alternate processing is to take place when the

conditions of the matching IF statement are not satisfied.

assignment statement

242 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

|
|
|
|

||
|

|

|
|

|

|
|

|
|
|
|
|
|
|

|

|

|

ELSE

The ELSE statement has no parameters. The ELSE statement must be

column-aligned with the matching IF statement. Only one ELSE statement is

allowed on the same line, even though each can align with a prior IF statement.

You can nest IF statements within ELSE statements. The only limitation on the

number of nested IF statements is the maximum number of columns available for

indented statements due to the panel record length.

The ELSE statement is indentation sensitive. If the conditional expression is true,

the ELSE statement that is column-aligned with the IF plus all statements to the

right of that column are skipped. Processing continues with the next statement that

begins in the same column as the ELSE or in a column to the left of the ELSE.

An example of using the ELSE statement:

IF (&DOW = UP)

 &ACTION = SELL

ELSE

 IF (&DOW = DOWN)

 &ACTION = BUY

 ELSE

 &ACTION = HOLD

&DOW = &BEAR

In this example, if the value of &DOW is UP, variable &ACTION is set to SELL

and processing continues at the statement &DOW = &BEAR. The indented

processing statements following the first ELSE statement execute if variable &DOW

does not have a value of UP. The assignment statement, &ACTION = HOLD,

executes only if the value of &DOW is not UP or DOWN.

Figure 67 on page 244 shows a sample panel definition with an IF/ELSE statement

pair. The current value of variable PHA is tested for the local area code, 919. If the

value of PHA is 919, variable RATE is set to the value of variable &LOCAL. If the

value of PHA is not 919, variable RATE is set to the value of variable &LONGD.

ELSE Statement

Chapter 7. Panel definition statement reference 243

EXIT and GOTO statements

Nested IF/ELSE statements can easily become complex, especially since the IF

statement is indentation sensitive. The GOTO and EXIT statements allow you to

avoid these complexities and achieve enhanced performance during panel

processing. You can transfer control back to the user as soon as processing errors

are detected.

The GOTO and the EXIT statements are both allowed in the)INIT,)REINIT,

)PROC,)ABCINIT, and)ABCPROC sections of the panel source definitions.

EXIT statement

 EXIT

The EXIT statement has no parameters. When an EXIT statement is encountered

during panel processing, ISPF halts processing of the section in which the

statement was found and bypasses all remaining statements in that section. Further

processing of the panel continues normally.

v Example 1: Simple GOTO/EXIT

)BODY

 %---------------------------- EMPLOYEE RECORDS ------------------------------

 %COMMAND===>_ZCMD %

 +

 %EMPLOYEE SERIAL: &EMPSER

 +

 + TYPE OF CHANGE%===>_TYPECHG + (NEW, UPDATE, OR DELETE)

 +

 + EMPLOYEE NAME:

 + LAST %===>_LNAME +

 + FIRST %===>_FNAME +

 + INITIAL%===>_I+

 +

 + HOME ADDRESS:

 + LINE 1 %===>_ADDR1 +

 + LINE 2 %===>_ADDR2 +

 + LINE 3 %===>_ADDR3 +

 + LINE 4 %===>_ADDR4 +

 +

 + HOME PHONE:

 + AREA CODE %===>_PHA+

 + LOCAL NUMBER%===>_PHNUM +

 +

)INIT

 &TYPECHG = TRANS (&TYPECHG N,NEW U,UPDATE D,DELETE)

)PROC

 &TYPECHG = TRUNC (&TYPECHG,1)

 IF (&PHA = ‘919’)

 &RATE = &LOCAL

 ELSE

 &RATE = &LONGD

)END

Figure 67. Sample panel definition with IF and ELSE statement

EXIT and GOTO statements

244 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

In this example, the VER statements are skipped if no values are entered for the

CUSTNAME or CUSTNUM variable fields. Processing for the)PROC is halted

after the .msg variable is set.

v Example 2: Multiple GOTOs

Assuming that the variable NEWCUST was entered and verified to contain one

of the two values on a previous panel display, this example illustrates that

certain fields on the panel currently being processed will or will not be set

depending on the value of NEWCUST.

v Example 3: GOTO Label within IF/ELSE

)PROC

 IF (&CUSTNAME = ’ ’)

 GOTO NAMERR

 IF (&CUSTNUM = ’ ’)

 .msg=xxxxx /* message indicating number is required */

 EXIT /* exit)PROC section */

 VER (&CUSTNAME,ALPHA,msg=xxxxx) /* messages specific to */

 VER (&CUSTNUM,NUM,msg=xxxxx) /* data type - alpha or num */

 GOTO NXTSECT

 NAMERR:

 .msg=xxxxx /* message indicating name must be entered */

 EXIT /* exit)PROC section */

 NXTSECT:

 zero, one, or more statements

)INIT

 &var2 = ’ ’

 IF (&newcust = ’ ’)

 GOTO BYPASS

 IF (&newcust = ’renew’)

 &var2 = 1

 GOTO NXTCHK1

 IF (&newcust = ’initial’)

 &var2 = 2

 GOTO NXTCHK1

 ELSE

 GOTO BYPASS

 NXTCHK1:

 IF (&var2 = 1)

 &var3 = 1

 &var4 = 0

 GOTO NXTSECT

 ELSE

 &var4 = 1

 &var3 = 0

 GOTO NXTSECT

 BYPASS:

 &var3 = 0

 &var4 = 0

 NXTSECT:

 zero, one, or more statements

)INIT

 IF (&var1 = ’ ’)

 GOTO BYPASS

 IF (&var2 = 1)

 &var5 = 1

 &var6 = 0

 BYPASS:

 &var7 = 1

 ELSE

 zero, one, or more statements

EXIT and GOTO statements

Chapter 7. Panel definition statement reference 245

If variable var1 is blank, control is transferred to the label BYPASS. Variables var5

and var6 are not set and processing will continue as if the IF statement were

TRUE. Variable var7 will be set to 1. The ELSE branch is not executed.

GOTO statement

 GOTO label

where:

label

Literal value of the label to which you will branch. The label:

v Must be from 1 to 8 characters in length

v Must begin with an alphabetic character (A-Z, a-z)

v May contain any other alphameric character (A-Z, a-z, 0-9).

The literal value of the label used must be followed by a colon when it appears

by itself as a label. For example:

 label:

ISPF translates the value for the label to uppercase before it is processed.

 There are no indentation restrictions on a GOTO and its corresponding label.

They may be at different indentation levels.

ISPF processes the GOTO statement as follows:

v ISPF assumes that transfer of control to the named label is downward.

v ISPF continues processing with the next sequential statement after the first

occurrence of the named label.

v ISPF ignores duplicate labels.

v ISPF may transfer control within the IF or ELSE branch of an IF/ELSE

statement. If the label is within the IF branch, processing continues with the next

statement following the label as if the IF were true. If the label is within the

ELSE branch, processing continues with the next statement following the label as

if the IF were false.

ISPF issues a severe error message if it does not find a matching label below the

GOTO statement and within the same section in which the GOTO statement is

coded. The label need not be on a line by itself.

The IF statement

The IF statement is a valuable tool used to verify a conditional expression. The

conditional expression can be as basic as testing the value of a variable or can be

expanded to use VER statement constructs and Boolean capabilities. This topic first

defines the complete syntax of the IF statement. Other more detailed topics

describe:

v Basic IF value testing

v IF statement with VER constructs

v IF statement with Boolean operators

v IF statement with VSYM built-in function

IF statements are valid in the)INIT,)REINIT,)PROC,)ABCINIT, and)ABCPROC

panel sections.

EXIT and GOTO statements

246 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

|

IF (conditional-expression [boolean-operator conditional-expression]..) ...
 [ELSE] ...

where:

conditional-expression

Is either:

Basic value test expression:

variable operator value[,value...]

VER statement construct coded without the MSG= parameter:

VER (variable [, NONBLANK], keyword [, value1, value2,...])

Boolean-operator

The character symbol & or characters AND (AND Boolean operator) or the

character symbol | or characters OR (OR Boolean operator).

ELSE

The optional statement that specifies alternate processing if the IF condition is

not satisfied.

Basic IF value testing

 IF (variable operator value [,value ...])

 ...
 [ELSE]

 ...

The parentheses in the syntax contain a conditional expression, in which the

operator is expressed in either uppercase character symbols, such as EQ, or in

special symbols, such as =. These symbols can be any of:

 = or EQ (equal to)

¬= or NE (not equal)

> or GT (greater than)

< or LT (less than)

>= or GE (greater than or equal)

<= or LE (less than or equal)

¬> or NG (not greater than)

¬< or NL (not less than).

You can specify comparison against up to 255 values for the EQ (=) and NE (¬=)

operators. For the remaining operators, you can specify comparison against only

one value.

If you use a character symbol operator, it must be separated from the variable

name and comparison value by one or more blanks. For example:

 IF (&ABC EQ 365)

IF Statement

Chapter 7. Panel definition statement reference 247

Separation of a special symbol operator from the variable name and comparison

value is optional.

 IF (&ABC = 365) is the same as IF (&ABC=365)

A compound symbol operator, such as <= or NG, must not contain intervening

blanks. For example:

 <= cannot be < =

In determining whether the criteria of a conditional expression are met, ISPF uses a

numeric compare if the value of the variable and the value being compared are

whole numbers between −2147483648 and +2147483647. Thus, if &A is set to +1,

the expression IF (&A=1) is evaluated as being true, using the numeric compare. If

the value of the variable and the value being compared are not whole numbers

between −2147483648 and +2147483647, ISPF uses a character compare, using the

EBCDIC collating sequence to evaluate the IF expression. For both numeric and

character compares, trailing blanks are ignored.

Examples of basic value testing:

v IF (&DSN = ‘’) — True if variable DSN is null or contains blanks.

v IF (&OPT EQ 1,2,5) — True if variable OPT contains any of the literal values 1,

2, or 5.

v IF (&A GE &B) — True if the value of variable A is greater than or equal to the

value of variable B.

v IF (&A ¬= AAA,BBB) — True if variable A is not equal to AAA and not equal to

BBB.

The IF statement is indentation sensitive. If the conditional expression is true, then

processing continues with the next statement. Otherwise, all following statements

are skipped up to a column-aligned ELSE statement, if one exists, or up to the next

statement that begins in the same column as the IF or in a column to the left of the

IF. Example:

IF (&XYZ = ‘’)

 &A = &B

 &B = &PQR

 IF (&B = YES)

 &C = NO

&D = &ZZZ

In this example, processing skips to statement &D = &ZZZ from either IF

statement if the stated condition is false.

Note that the scope of the IF statement is not terminated by a blank line.

IF statement with VER constructs

The conditional expression on the IF statement now includes VER statement

constructs with one exception: the MSG= parameter is not allowed. The IF

conditional-expression evaluates to TRUE (1) for successful verifications and to

FALSE (0) for failing verifications. See “The VER statement” on page 268 for

complete explanation of the VER statement. An example of using VER statements

with IF statements:

IF (VER (valid keyword parameters and values)) ...
ELSE

 .MSG = nld122

IF Statement

248 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

IF (VER (valid keyword parameters and values)) ...

The VER statement can be split over more than one line, but the VER statement

and the left parenthesis of its keyword parameters must be on the same line. This

example is invalid:

IF (VER

 (valid keyword parameters and values)) ...

IF statement with VSYM built-in function

The syntax of the panel IF statement supports the VSYM built-in function within

any of the conditional expressions as either the variable on the left side of the

operator or the value on the right side of the operator. The VSYM built-in function

can also be included in the variable on the VER statement specified within an IF

statement.

Examples of the VSYM built-in function in the IF statement:

IF (VSYM(A) = &B)

IF (&A = VSYM(B))

IF (&A = VSYM(B), VSYM(C), &D)

IF (VSYM(A) = &B | VSYM(C) = &D)

IF (VER(VSYM(X),NAME)

IF statement and boolean operators

You can combine two or more conditional expressions on the IF statement. ISPF

evaluates the conditional expressions on the IF statement from left to right, starting

with the first expression and proceeding to the next and subsequent expressions on

the IF statement until processing is complete.

The use of the AND Boolean operator takes precedence over the OR Boolean

operator as shown in these examples.

The number of conditional expressions you can specify on the IF statement is

limited to 255.

The accepted symbols for the Boolean operators are:

v & or AND (AND Boolean operator)

AND processing returns a TRUE result for the IF statement only if all the

conditional expressions evaluate as TRUE.

v | or OR (OR Boolean operator)

OR processing returns a TRUE result for the IF statement if any of the

conditional expressions evaluate as TRUE. Also, for an IF statement to be

evaluated as FALSE, all conditional expressions must be evaluated as FALSE.

The Boolean operators must be separated by a preceding and following blank or

blanks.

Examples of Boolean operators in the IF statement:

v Example 1: Comparison of two expressions using different Boolean operators in

two separate IF statements.

IF (VER (&vara,NB,ALPHA) & VER (&varb,NB,ALPHA)) ...
ELSE

IF Statement

Chapter 7. Panel definition statement reference 249

|
|
|
|
|
|

|

|
|
|
|
|

|

IF (&varc = 123 OR VER (&vard,NB,NUM)) ...

The first IF statement will be successful only if both VER expressions are

satisfied, while the IF statement under the ELSE will be successful if either of

the expressions on the IF statement are satisfied.

v Example 2: Comparison of three expressions using the AND Boolean operator in

the same IF statement, with additional OR Boolean operators.

IF (VER (&vara,NB,ALPHA) & VER (&varb,NB,ALPHA) &

 &varc = abc,xyz | &vard = 123 | &vard = 456) ...
ELSE

 .msg = nld123

The IF statement will be successful if the comparisons of the first three

expressions evaluate to TRUE, or if expressions four or five evaluate to TRUE.

v Example 3: Comparison of two pairs of expressions using the AND Boolean

operator combined on the same IF statement by the OR Boolean operator.

IF (VER (&vara,NB,ALPHA) AND &varb = abc OR

 VER (&vara,NB,ALPHA) AND &varb = xyz) ...
ELSE

 .msg = nld124

 .attr (vara) = ’color(yellow)’

 .attr (varb) = ’color(yellow)’

Either of the pairs of expressions must evaluate to TRUE to achieve a successful

IF statement.

v Example 4: Comparison of three expressions showing that the AND operator has

precedence.

IF (Expression-1 OR Expression-2 AND Expression-3) ...
ELSE

 .msg = nld125

Because the IF statement AND Boolean operator has precedence over the IF

statement OR Boolean operator, specifying an IF statement similar to the one

shown might not give you the results you expected.

If you expected the previous statement to be evaluated like this:

 IF ((expression1 OR expression2) AND expression3)

You would need to write either two separate IF statements:

IF (Expression-1 OR Expression-2)

 IF (Expression-3) ...
 Else

 .msg = nld126

Or two separate comparison pairs:

IF (Expression-1 AND Expression-3 OR

 Expression-2 AND Expression-3) ...
Else

 .msg = nld127

The PANEXIT statement

The ISPF panel user exit provides a way for you to extend the panel language

processing of dialog variables. This processing can include operations such as

IF Statement

250 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

verification, transformation, translation, and formatting of dialog variables passed

to the panel user exit routine. Performing these operations in a panel user exit

routine reduces the logic required in the ISPF function programs.

Use the PANEXIT statement in a panel’s)INIT,)REINIT, or)PROC section to

invoke the panel user exit. This statement causes ISPF to branch to the panel user

exit routine. When the routine processing completes, control returns to the next

sequential panel language statement.

 PANEXIT ((value,value,...),{PGM,exit-add

 [,exit-data]

 [,MSG=msgid]

 LOAD,exit-mod

 [,exit-data]

 [,MSG=msgid]

 REXX,rexx-name

 [,exit-data]

 [,MSG=msgid]})

where:

value Specifies the names of dialog variables being passed to the exit.

The string of values, including the parenthesis, cannot exceed 255

characters. The string of values can be represented by the name of

a dialog variable that contains a list of names of variables being

passed to the exit routine.

PGM Keyword that indicates that the exit routine being invoked was

loaded when ISPF loaded the application dialog or was loaded

from the application. The application passes ISPF the address of

the exit routine in exit-add.

exit-add This is the name of a 4-byte, FIXED format dialog variable that

contains the address of the exit routine, which can reside above or

below the 16Mb line. The exit routine receives control in

AMODE=31 mode. This parameter is used in conjunction with the

keyword PGM.

exit-data This is the name of a 4-byte FIXED format dialog variable that

contains a value, such as the address of an information area, to be

passed to the exit routine.

msgid If no message identification is returned to ISPF from the exit

routine, this parameter identifies the message to be displayed if a

variable fails the exit routine evaluation. If this parameter is not

specified, and no message identification is returned from the exit

routine, ISPF issues a generic message indicating that the exit

routine evaluation failed.

LOAD Keyword that indicates that the exit routine is to be loaded

dynamically. The application passes ISPF the module name of the

exit routine that is to be dynamically loaded. The module name is

passed in the exit-mod parm.

exit-mod This parameter identifies the name of the panel user exit routine

module that is to be dynamically loaded by ISPF. The panel user

exit name can be passed as a literal or as a dialog variable that

contains the panel user exit name. This parameter is used in

conjunction with the LOAD keyword.

PANEXIT Statement

Chapter 7. Panel definition statement reference 251

REXX Keyword that indicates the name of the Rexx panel exit that is to

be loaded and run. The exit can be an interpreted Rexx exec or an

exec that was compiled into load module form. Standard search

sequences are used to load the Rexx program.

rexx-name This parameter is the name of the Rexx program that is to be used

as the panel exit. If the exit is an interpreted Rexx exec and might

conflict with an existing load module name, the name can be

preceded by a percent sign (%) to avoid using the load module. If

the REXX program is in load module format, ensure that it was

linked with the MVS stub.

On the PANEXIT statement you can specify that these are passed to the panel user

exit routine:

v A list of dialog variables to be processed by the exit routine in one call. Rules

that apply to the variables being passed are:

– Variable values must be in character format when passed, and must remain in

character format.

– The exit routine can change a variable’s value but it cannot change its length.

Thus, if a dialog uses the VDEFINE service to define any of these variables to

be passed, it should specify the NOBSCAN option. Otherwise, the variable

value’s length is considered to be the length of the actual data with blanks

being ignored.

For implicitly defined variables, the variable length is considered to be the

same as the length of its value.
v A 4-byte area that you can use to pass the address of data to be used by the exit

routine.

v The identification of a message to be issued if a variable fails the exit routine

evaluation. ISPF uses this value to set the .MSG control variable or, in the case of

a panel user exit severe error (RC=20 or invalid value), to set ZERRMSG.

Notes:

1. A panel user exit routine cannot access any dialog variables except those

passed on the call.

2. A panel user exit routine cannot issue requests for any ISPF services.

3. ISPF ignores any PANEXIT statement issued from dialog test option 7.2.

4. A PANEXIT statement cannot be issued from a selection panel that initiates a

dialog before defining the exit address.

5. Although panel exits can be written in Language Environment-conforming

languages, the overhead of initializing Language Environment each time the

exit is called needs to be considered.

Following a successful validation exit, during which one or more dialog variable

values are changed, ISPF updates the values for all dialog variable names included

on the PANEXIT statement. This allows the exit routine to define dialog variables

for cursor field or cursor position, and to return these values to ISPF when an

error has been detected.

How to LOAD the panel user exit routine

If the dialog function routine and the panel user exit routine are separate object

modules, you can load the panel user exit routine by either:

v Linking the exit routine object module to the dialog function object module

containing the display request for the panel from which the PANEXIT statement

is issued. Thus, when ISPF loads the application, it also loads the exit routine.

PANEXIT Statement

252 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

v Loading the exit routine from the application and passing to ISPF the address of

the exit routine.

v Letting ISPF load the exit routine dynamically.

How to LOAD a REXX panel exit

REXX panel exits can interpreted Rexx programs or compiled Rexx programs

(CREXX or load modules). ISPF automatically loads the Rexx program by using

standard system interfaces. For non-load module programs, ISPF calls TSO to

pre-process the program. The program remains loaded for as long as the current

screen is active. If you change your Rexx program and want to run the new copy,

you must end any split screens that used the previous copy.

REXX exits receive only one parameter — a hexadecimal representation of the

address of the list of addresses shown in Figure 68 on page 254. You can use the

Rexx storage() function to view and modify the parameters that are pointed to by

that list, or you can use the ISPF function named ISPREXPX, described in “Using

ISPREXPX to read and modify parameters” on page 256.

Note that you can also code REXX statements directly within the source of a panel.

See “The *REXX statement” on page 258.

Invoking the panel user exit routine

A dialog invokes the panel user exit by issuing the PANEXIT statement from a

panel’s)PROC,)INIT, or)REINIT section. If the LOAD keyword is specified, ISPF

will issue an OS load to bring the load module into virtual storage. ISPF then

invokes the exit routine through a call (BALR 14,15). You must use standard OS

linkage conventions when invoking the panel user exit. The exit routine (called in

AMODE 31) must support 31-bit addressing.

Panel exits can be written in languages that use the Language Environment

runtime environment. However, a mixture of Language Environment-conforming

main dialog code and service routine code is not supported. Dialogs and service

routines must either all be Language Environment-conforming or all be Language

Environment-nonconforming.

ISPF uses the standard parameter list format to pass parameters. Register one

points to a list of addresses; each address points to a different parameter as shown

in Figure 68 on page 254. See “Parameters passed from ISPF to the panel user exit

routine” on page 254 for information on these parameters.

PANEXIT Statement

Chapter 7. Panel definition statement reference 253

The keyword, LOAD, on the PANEXIT panel statement, provides the option of

dynamically loading a panel user exit routine. PGM and LOAD are the only valid

keywords. PGM indicates that a panel user exit using a compiled source is being

invoked. LOAD indicates that the panel user exit routine named by the exit-mod

parameter is to be dynamically loaded by ISPF.

ISPF checks the keyword to determine if the panel user exit routine is to be

dynamically loaded. If it is, ISPF issues an OS load to bring the load module into

virtual storage. The search sequence for link libraries is: job pack area, ISPLLIB,

steplib, link pack area, linklib. See z/OS ISPF Services Guide for further discussion

of the search order using LIBDEF.

The panel user exit routine is loaded only once per SELECT level the first time the

panel is displayed. The loaded panel user exit routine is not deleted until the

SELECT, which first displayed the panel, is terminated.

Parameters passed from ISPF to the panel user exit routine

Parameters passed to the panel user exit routine are (in the order passed):

1. Exit Data

The value of the dialog variable identified on the PANEXIT statement to

contain exit data. Its format is a fullword fixed value. If no exit data area is

provided, ISPF passes binary zeros.

2. Panel Name

The name of the panel from which the panel user exit is being invoked. Its

format is CHAR(8), left-justified in the field. ISPF ignores any changes made to

this parameter by the exit routine.

3. Panel Section

A 1-character code that identifies the panel section from which the panel user

exit is being invoked. Its format is CHAR(1). Its value is:

I for the)INIT section

R for the)REINIT section

P for the)PROC section.

4. Message ID

The identification of the message used to set the .MSG value if the variable

evaluation fails. In case of a severe error in the exit routine processing, ISPF

uses this value to set variable ZERRMSG. Its format is CHAR(8). When the exit

 ┌─────────┐

 reg 1 ──�│ addr 1 ├──� Exit Data

 ├─────────┤

 │ addr 2 ├──� Panel Name

 ├─────────┤

 │ addr 3 ├──� Panel Section

 ├─────────┤

 │ addr 4 ├──� Message ID

 ├─────────┤

 │ addr 5 ├──� Number of Variables

 ├─────────┤

 │ addr 6 ├──� Array of Variable Names

 ├─────────┤

 │ addr 7 ├──� Array of Variable Lengths

 ├─────────┤

 │ addr 8 ├──� String of Variable Values

 └─────────┘

Figure 68. Standard parameter list format

PANEXIT Statement

254 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

routine is invoked, it contains eight blanks (X’40’). On return to ISPF, if the

value in Message ID is not blank, ISPF assumes the value to be a message ID,

which must be left-justified in the field.

5. Number of Variables

The dimension of the array of variable names and the array of variable lengths

passed to the panel user exit routine. Its format is a fullword fixed value. ISPF

ignores any changes made to this parameter by the exit routine.

6. Array of Variable Names

An array of dialog variable names being passed to the panel user exit routine.

Each array entry has a format of CHAR(8), left-justified in the array. ISPF

ignores any changes made to this parameter by the exit routine.

7. Array of Variable Lengths

An array of dialog variable lengths being passed to the panel user exit routine.

Each array entry format is a fullword fixed value. If the exit routine is a REXX

routine that uses the ISPREXPX to set and return the variables, then the exit

routine is permitted to increase or decrease the length of any variables passed

back from the exit, except ZRXRC and ZRXMSG. Otherwise, if the exit routine

changes any of the variable length values, a severe error results.

8. String of Variable Values

A character buffer of dialog variable values mapped by the array of variable

lengths and the array of variable names. The length of the buffer is the sum of

the lengths in the array of variable lengths. The exit routine returns updated

dialog variable values to ISPF in this buffer.

Return codes and error processing

Return codes, set in the panel user exit routine, recognized by ISPF are:

0 Successful operation.

8 Exit-defined failure. ISPF sets the .MSG control variable and displays or

redisplays the panel with the message.

20 (or code unrecognized by ISPF)

Severe error in the exit routine.

For an exit routine return code of 8, ISPF sets the .MSG control variable by using

this search order:

1. If the value in the Message ID parameter is not blank on return to ISPF, that

value is used for setting the .MSG control variable.

2. If the value in the Message ID parameter is blank on return, the value (if any)

specified for the MSG= keyword on the PANEXIT statement is used for setting

the .MSG control variable.

3. If neither the Message ID parameter nor the MSG= keyword has been given a

value, the default ISPF exit error message is used for setting the .MSG control

variable.

The panel section in which the .MSG control variable is set affects the message

display as follows:

v)INIT or)REINIT section: the message is displayed on the panel.

v)PROC section: the panel, including the message to be displayed, is redisplayed.

If the return code from the exit routine is either 20 or not one of the recognized

codes, the display service terminates with a severe error condition. ISPF sets the

ZERRMSG system variable by using this search order:

PANEXIT Statement

Chapter 7. Panel definition statement reference 255

|
|
|
|
|
|

1. If the value in the Message ID parameter is not blank on return to ISPF, it is

used for setting the ZERRMSG system variable. This allows the exit routine to

define the message to be used in case of a severe error.

2. If the value in the Message ID parameter is blank on return, the value (if any)

specified for the MSG= keyword on the PANEXIT statement is used for setting

the ZERRMSG system variable.

3. If neither the Message ID parameter nor the MSG= keyword has been given a

value, the default ISPF exit error message is used for setting ZERRMSG.

If CONTROL ERRORS CANCEL is in effect, ISPF displays on the severe error

panel the message indicated by the value of ZERRMSG.

Using ISPREXPX to read and modify parameters

A Rexx panel exit receives only the storage address of the standard panel exit

parameter list. Although you can use the standard Rexx storage() function to read

and modify the list, ISPF supplies a program called ISPREXPX to set local Rexx

variables that reflect the information passed to and from the panel exit.

ISPREXPX syntax:

Call ISPREXPX(’I’) to initialize Rexx variables

Call ISPREXPX(’T’) to set ISPF variables from the Rexx variables of the

same name

 ISPREXPX establishes several variables within the Rexx program. The stem

variable VARNAMES.n contains the names of the variables passed to the program.

ISPREXPX then creates variables of those names, called ″named variables″.

The Rexx program must ensure that changes to the variables are done to the

named variables and not to the VARNAMES.n stem variable. For example, if the

PANEXIT statement on the panel passes in a variable named ZDATA, then

ISPREXPX creates a named variable called ZDATA. The Rexx program must refer

to and update that variable. If you do not know the exact name that is specified on

the PANEXIT statement in the panel that calls the Rexx exit, you can get the name

from the VARNAMES.n stem variable and use the INTERPRET instruction to get

and set the actual variable.

A REXX panel exit can only increase or decrease the length of any variables passed

back from the exit to the ISPF dialog by means of the command, ISPREXPX ’T’.

 Variable Explanation

user variables The variables as named in the PANEXIT statement. For example, a

PANEXIT statement like PANEXIT((ZDATA,USER),REXX...) creates

variables ZDATA and USER. Changes to the variables are returned

to ISPF. If the length changes, the new value is truncated or padded

with blanks as needed to keep the original length.

VARNAMES.0

VARVALS.0

VARLENS.0

All of these variables contain the number of variable names passed

to the panel exit. Changes to these variables are ignored.

MSGID Message ID to set in case of error. It is blank on entry to the exit.

Changes to this variable are used.

PANELNAME The name of the panel being processed. Changes to this variable are

ignored.

PANELSECTION Panel section ’I’, ’R’, or ’P’. Changes to this variable are ignored.

PANEXIT Statement

256 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

|
|

Variable Explanation

EXDATA A hexadecimal representation of the address of the user data.

Changes to this variable are ignored, but the program might change

the data to which this address points.

Return codes: These return codes are possible:

0 Normal result. Variables were retrieved or set successfully.

16 Parameter error. Incorrect parameter passed to ISPREXPX.

20 Error. Another error occurred. Most likely there is a failing return code

from a Rexx service called by ISPREXPX.

Example: This sample exit changes the case of all data in the variable ZDATA. It

also overlays the beginning of the variable ZDATA with the string ’**REXX**’. The

name ZDATA is used on the PANEXIT statement in the panel source and is

assigned to the variable name VARNAMES.1.

/* REXX panel exit: panexit((zdata),REXX,sample) */

call ISPREXPX ’i’

zdata=overlay(’02’x’** REXX **’’01’x,translate(zdata, ,

 ’abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ’, ,

 ’ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz’))

call ISPREXPX ’t’

Note: You can see how this panel works by saving this example in a REXX library

using the name SAMPLE and changing the Browse panel ISRBROBA to

include this line in the)INIT and)REINIT sections:

panexit((zdata),REXX,sample)

The REFRESH statement

The REFRESH statement provides a means to force specified fields in the panel

body to be retrieved before a redisplay.

 REFRESH (value, value, ...)

where:

value Name of an input or output field in the panel body.

Typically, when a panel is redisplayed, the automatic fetching of variables that

appear in the panel body is bypassed. As a result, all variables are normally

displayed as the user last saw them, even though the variable contents can have

been changed. REFRESH causes the contents of specified fields to be retrieved and

allows the user to see any changes that have occurred since the panel was last

displayed.

The REFRESH statement can appear within the)PROC or)REINIT section of a

panel definition. ISPF flags it as an error if it appears in the)INIT section. When

this statement is encountered, the specified input/output fields within the panel

body are retrieved from the corresponding dialog variables prior to redisplay of

the panel.

A value of * indicates that all input/output fields on the panel are retrieved. You

can omit the parentheses if only one field is refreshed.

v Example 1:

PANEXIT Statement

Chapter 7. Panel definition statement reference 257

)PROC ...
 IF (.MSG ¬= ‘’)

 &STMT = ‘Correct invalid field and press Enter key’.

 IF (.MSG = ‘ ’)

 &STMT = ‘ ’

 REFRESH STMT

If the panel is displayed again and if the control variable .MSG is set to

nonblank in the)PROC section, the panel field STMT is reset to Correct the ...

Enter key. Otherwise, the field is set to blank.

v Example 2:

)REINIT

 REFRESH(SEL, RENAME)

Both panel fields SEL and RENAME are reset with their current values before

any redisplay.

v Example 3:

)REINIT

 REFRESH(*)

All of the panel fields are reset to their current values.

v Example 4:

)REINIT

 REFRESH(&RVARS)

The variable RVARS will contain a list of one or more panel fields to be

refreshed.

A field that is refreshed on the screen remains unchanged for multiple redisplays

unless it is again refreshed.

The *REXX statement

The *REXX statement is used to invoke REXX code in a panel’s)INIT,)REINIT, or

)PROC section. The REXX can be coded within the panel source immediately after

the *REXX statement, or the name of a member containing a REXX program can be

supplied.

 REXX[([,]value,value,...[,(member)])]

where:

* Specifies that all the dialog variables defined in the panel)BODY

section are to be passed to the REXX code for processing.

value Specifies the names of dialog variables passed to the REXX code

for processing.

member Specifies the name of a member in the standard search sequences

used to load REXX programs. This member can contain interpreted

REXX or compiled REXX. Compiled REXX can be either the output

generated by the REXX compiler when using the CEXEC option or

a load module generated when link-editing the output generated

by the REXX compiler when using the OBJECT option.

REFRESH statement

258 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Notes:

1. The string of values, including the parentheses, cannot exceed 255 characters.

The string of values can be represented by the name of a dialog variable

containing a list of variables being passed to the REXX code.

2. The REXX code within a panel procedure is stored in an internal table which

contains the statements for the)INIT,)REINIT,)AREA, and)PROC sections of

the panel. The size of this table is limited to 64K, so a large number of REXX

statements coded directly within a panel procedure could cause this table to

overflow, resulting in error message ISPP321. If this error occurs, consider using

the (member) option on the *REXX statement so the REXX is loaded from a

member in the standard search sequences used for REXX programs.

3. When the REXX program has been compiled into load module format, it needs

to have been linked with the MVS stub.

4. The REXX code cannot access any dialog variables except those specified on the

*REXX statement.

5. The REXX code cannot issue requests for any ISPF services.

6. REXX coded within the panel source must be terminated by a *ENDREXX

statement.

Processing ISPF dialog variables with panel REXX

ISPF dialog variable can be processed by panel REXX code. Dialog variables are

made available to the REXX code via the parameters specified on the *REXX

statement:

v Specifying * as the first parameter causes all the dialog variables associated with

the input and output fields on the panel to be passed to the panel REXX code.

v Specifying a dialog variable name causes that dialog variable to be passed to the

REXX code.

These rules apply to the dialog variables passed to panel REXX:

v The variable values must be in character format when passed, and must remain

in character format.

v Panel REXX can change the value of a variable but it cannot change its length.

v For implicitly defined variables that are fields on the panel, the length of the

associated REXX variable is the larger of the length of the panel field and the

length of the variable’s value.

For other implicitly defined variables, the variable length is considered to be the

same as the length of its value.

ISPPRXVP: dialog variable processor for panel REXX: The ISPF module

ISPPRXVP is used to make ISPF dialog variables available to panel REXX, and to

update the dialog variables after they have been processed by panel REXX.

When the panel REXX is interpreted REXX (that is, the REXX statements are coded

directly in a panel procedure or the member specified on *REXX statement

contains interpreted REXX) ISPF creates calls to ISPPRXVP to perform these tasks:

v Set up corresponding REXX variables for the ISPF dialog variables before the

panel REXX is invoked

v Update the ISPF dialog variables with any changes made by the panel REXX

after it has finished.

This is done by ISPF generating these REXX statements before and after the

supplied panel REXX code:

*REXX statement

Chapter 7. Panel definition statement reference 259

|

(Bold text indicates REXX generated by ISPF.)

Note: The 11 lines of REXX code generated by ISPF before the supplied panel

REXX and the line of REXX code generated by ISPF after the supplied panel

REXX will affect the results obtained from the SOURCELINE function. For

example using SOURCELINE() in interpreted panel REXX returns a value

that is 12 more than the number of source lines of panel REXX.

Interpreted panel REXX and the EXIT statement

If the interpreted panel REXX code uses the EXIT statement to terminate

REXX processing, the termination call to ISPPRXVP generated by ISPF will

not be executed. Therefore, any changes made to REXX variables will not be

applied to the corresponding ISPF dialog variables. If you need to use the

EXIT statement in your panel REXX and you want changes applied to the

ISPF dialog variables, ensure a termination call to ISPPRXVP (that is,

Call ISPPRXVP ’T’) is run before the EXIT statement.

 When the panel REXX is compiled REXX, ISPF does not create these initialization

and termination calls to ISPPRXVP. Therefore, panel developers must include these

calls in their panel REXX code.

Return codes and error processing

ISPF provides these system dialog variables for return code and error processing in

panel REXX:

ZRXRC Available for panel REXX to pass a return code back to ISPF.

Length is 2 bytes. The corresponding REXX variable is initialized

with a value of 0.

ZRXMSG Available for panel REXX to provide a message ID used to set the

.MSG value. Length is 8 bytes. The corresponding REXX variable is

initialized with a value of 8 blanks.

 ISPF recognizes these return codes passed back by panel REXX in the dialog

variable ZRXRC:

0 Successful operation.

8 Panel REXX defined failure. ISPF sets the .MSG control variable and displays

or redisplays the panel with the message.

 Call ISPPRXVP ’I’

 If rc!=0 then do

 say ’ISPPRXVP Init failed rc=’ rc

 Return

 End

 Call p_01A2B3C0

 Call ISPPRXVP ’T’

 If rc!=0 then

 say ’ISPPRXVP Term failed rc=’ rc

 Return

 P_01A2B3C0:

 ...
 panel REXX code

 ...
 Return

*REXX statement

260 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

20 Severe error in the panel REXX.

 Any other return code not recognized by ISPF is treated as a severe error in the

panel REXX.

When control returns to ISPF after the panel REXX has executed, if ZRXRC

contains a return code of 8, ISPF sets the .MSG control variable using this search

order:

1. If the value in ZRXMSG is not blank on return to ISPF, that value is used to set

the .MSG control variable.

2. If the value in ZRXMSG is blank on return, the default ISPF panel REXX error

message ISPP335 is used to set the .MSG control variable.

The panel section in which the .MSG control variable is set affects the message

display as follows:

v)INIT or)REINIT section: The message is displayed on the panel.

v)PROC section: The panel, including the message to be displayed, is redisplayed.

If the return code in ZRXRC is either 20 or is not one of the recognized codes, the

display service terminates with a severe error condition. ISPF sets the ZERRMSG

system variable using this search order:

1. If the value in ZRXMSG is not blank when control returns to ISPF, it is used to

set the ZERRMSG system variable. This allows the panel REXX to define the

message to be used in case of a severe error.

2. If the value in ZRXMSG is blank when control returns to ISPF, ZERRMSG is set

to ISPP336. This is the default ISPF message for severe errors relating to panel

REXX.

If CONTROL ERRORS CANCEL is in effect, ISPF displays on the severe error

panel the message indicated by the value of ZERRMSG.

An example of using panel REXX

The panel shown demonstrates the use of the *REXX statement to invoke REXX

code from the)INIT and)PROC sections. The application displays cost, tax, and

sales commission values for an order quote.

*REXX statement

Chapter 7. Panel definition statement reference 261

)PANEL

)ATTR DEFAULT(%+_) FORMAT(MIX)

 ~ TYPE(PT)

 ̀ TYPE(PIN)

 ! TYPE(FP)

 @ TYPE(NT)

 % TYPE(NEF)

 # TYPE(NEF) JUST(RIGHT)

 * TYPE(VOI) JUST(RIGHT)

)BODY WINDOW(70,20) CMD(ZCMD)

@ ~Widget Order Quotes@ @

!Command ===>%Z @

@

`Enter the number of widgets to be ordered and the quoted price.

@

!Number of Widgets. . .#Z @

!Quoted Price#Z @

@

!Total Cost ex Tax. . .*Z @

!Total Tax.*Z @

!Total Cost*Z @

@

!Sales Commission . . .*Z @

@

)INIT

.ZVARS = ’(ZCMD NWIDGETS QPRICE TCSTXTAX TOTTAX TOTCOST SCOMM)’

/* Call REXX routine VALUSER to validate the user is allowed to use */

/* this application. */

*REXX(ZPANELID,ZUSER,(VALUSER))

/* If the user is not allowed, display a message and protect the */

/* input fields. */

IF (.MSG ¬= &Z)

 .ATTRCHAR(#) = ’TYPE(LI)’

)PROC

/* Call REXX routine VALUSER to validate the user is allowed to use */

/* this application. */

*REXX(ZPANELID,ZUSER,(VALUSER))

/* If the user is not allowed, display a message and protect the */

/* input fields. */

IF (.MSG ¬= &Z)

 .ATTRCHAR(#) = ’TYPE(LI)’

 EXIT

Figure 69. Panel REXX example (Part 1 of 3)

*REXX statement

262 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

/* Initialize the cursor position variable. */

&CPOS = ’--------’

&HPRICE = ’ ’

&LPRICE = ’ ’

/* Invoke panel REXX to validate input and calculate quote values. */

REXX(,CPOS,LPRICE,HPRICE)

Trace O

upper zcmd

cpos = "’ZCMD’"

/**/

/* If the CLR command is entered in the command field, */

/* clear all input/output fields and return to redisplay */

/* the panel. */

/**/

If zcmd = ’CLR’ then do

 nwidgets = ’’

 qprice = ’’

 call Clear_Output

 return

End

/**/

/* Ensure the output fields are cleared. */

/**/

Call Clear_Output

/**/

/* Verify the value entered for the number of widgets is */

/* a positive whole number. */

/**/

if datatype(nwidgets,’N’) = 0 |,

 pos(’.’,nwidgets) ¬= 0 |,

 pos(’-’,nwidgets) ¬= 0 then do

 cpos = ’NWIDGETS’

 zrxmsg = ’TPRX001’

 zrxrc = 8

 return

end

/**/

/* Verify the quoted price is a monetary value. */

/**/

qprice = strip(qprice)

if substr(qprice,1,1) = ’$’ then

 qprice = substr(qprice,2)

if datatype(qprice,’N’) = 0 |,

 (pos(’.’,qprice) ¬= 0 & ((length(qprice) - pos(’.’,qprice)) > 2)) then do

 cpos = ’QPRICE ’

 zrxmsg = ’TPRX002’

 zrxrc = 8

 return

end

/**/

/* Verify the quoted price is above the lowest possible */

/* value. */

/**/

lprice = 12.50

if qprice < lprice then do

 cpos = ’QPRICE ’

 zrxmsg = ’TPRX003’

 lprice = ’$’||lprice

 zrxrc = 8

 return

end

Figure 69. Panel REXX example (Part 2 of 3)

*REXX statement

Chapter 7. Panel definition statement reference 263

The user of this application enters the number of widgets to be ordered and the

price quoted to the customer. The panel REXX coded directly in the)PROC section

receives all the panel input and output fields for processing. It also receives the

CPOS variable used to set the cursor position, and the LPRICE and HPRICE

variables used to check that the quoted price is in a valid range. This panel REXX

performs these functions:

/**/

/* Verify the quoted price is above the highest possible */

/* value. */

/**/

hprice = 25.00

if qprice > hprice then do

 cpos = ’QPRICE ’

 zrxmsg = ’TPRX004’

 hprice = ’$’||hprice

 zrxrc = 8

 return

end

/**/

/* Calculate the total pre-tax cost. */

/**/

tcstxtax = format(nwidgets*qprice,5,2)

/**/

/* Calculate the total sales tax at a rate of 6.25%. */

/**/

tottax = format(tcstxtax*0.0625,5,2)

/**/

/* Calculate the total cost after tax. */

/**/

totcost = format(tcstxtax+tottax,5,2)

/**/

/* Calculate the sales commission at a rate of 12.5% of the */

/* profit. */

/**/

scomm = format((tcstxtax-(nwidgets*lprice))*0.125,5,2)

/**/

/* Format the output fields for display. */

/**/

qprice = ’$’||strip(qprice)

tcstxtax = ’$’||strip(tcstxtax)

totcost = ’$’||strip(totcost)

tottax = ’$’||strip(tottax)

scomm = ’$’||strip(scomm)

return

/**/

/* This routine clears the output fields. */

/**/

clear_output:

 tcstxtax = ’’

 tottax = ’’

 totcost = ’’

 zcmd = ’’

 scomm = ’’

return

*ENDREXX

IF (.MSG ¬= &Z)

 .CURSOR = &CPOS

 REFRESH(*)

ELSE

 .CURSOR = ZCMD

/* IF (.MSG ¬= &Z AND .MSG NE TPRX000 AND &ZVERB NE CANCEL) .RESP = ENTER */

)END

Figure 69. Panel REXX example (Part 3 of 3)

*REXX statement

264 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

v Validates the values entered by the user. If any values are invalid, variable

ZRXRC is set to 8, the appropriate error message ID is set in variable ZRXMSG,

the appropriate field name is stored in the variable CPOS, and control is

returned to ISPF.

v Calculates and formats the values displayed for the cost (ex tax), tax, total cost,

and sales commission.

v Checks if the user has entered ’CLR’ in the command. If so, all the input/output

fields on the panel are set to blanks.

The panel REXX routine in member VALUSER is invoked in the)INIT and)PROC

sections. This routine receives the system variables ZPANELID and ZUSER and

checks if the user is allowed to use the panel. This is the REXX code for VALUSER:

/**/

/* Call ISPPRXVP to get the ISPF dialog variables into */

/* REXX. */

/**/

Call ISPPRXVP ’I’

/**/

/* This common REXX routine checks whether the user is */

/* allowed to use the panel being displayed. */

/**/

say ’zpanelid = ’ zpanelid

say ’zuser = ’ zuser

found = 0

users = ’’

/**/

/* Set up the user list based on the panel Id. */

/**/

if zpanelid = ’SQUOTE’ then

 users = ’ADAMS MITCHELL JACKSON JAMES JONES WEBSTER’

else

if zpanelid = ’PORDER’ then

 users = ’BRADLEY CONNOR EVANS PRINCE WALLS’

else

if zpanelid = ’INVENTRY’ then

 users = ’BAXTER HILL NELSON SWAN WILSON’

/**/

/* Check that the user Id is in the user list. */

/**/

do i = 1 to words(users)

 if zuser = word(users,i) then do

 found = 1

 leave

 end

end

/**/

/* If not found, pass back error message TPRX009 in */

/* dialog variable ZRXMSG and set a return code of 8 */

/* in dialog variable ZRXRC. */

/**/

if ¬found then do

 zrxmsg = ’TPRX009’

 zrxrc = 8

end

/**/

/* Call ISPPRXVP to get update the ISPF dialog */

/* variables with the changes made in this REXX. */

/**/

Call ISPPRXVP ’T’

Return

Figure 70. Sample member VALUSER to invoke panel REXX

*REXX statement

Chapter 7. Panel definition statement reference 265

Member VALUSER contains compiled REXX, so processing commences with a call

to ISPPRXVP to initialize REXX variables for the ISPF dialog variables ZPANELID,

ZUSER, ZRXRC and ZRXMSG. Before returning to ISPF there is also a call to

ISPPRXVP to update these dialog variables with the values in the corresponding

REXX variables.

These are the messages used by this application:

Panel REXX example supplied with ISPF: The member ISRVCALP in the ISPF

panel library contains a panel which makes use of panel REXX. The)INIT

procedure section of the panel contains a *REXX statement which invokes the

REXX in member ISRVCHIL in the ISPF REXX exec library. This panel REXX code

is used to enable color highlighting of the entries in the trace data set generated by

the ISPVCALL utility. ISPVCALL is used by the ISPF product support team to

assist in debugging customer reported problems.

The TOG statement

Use the TOG statement to alternate the value of a variable between two values.

 TOG(mode,fld,&variable[,value1,value2])

where:

mode Mode in which TOG is to function:

v S—single, used for pull-downs and single-choice selection fields.

v M—multiple, used for multiple choice selection fields.

fld Panel field used to determine whether &variable alternates.

&variable

Variable whose value may alternate between value1 and value2.

value1 Value &variable receives if &variable is not equal to value1. The default is

0. Value1 can be a dialog variable or literal.

value2 Value &variable receives if &variable is equal to value1. The default is 1.

Value2 can be a dialog variable or literal.

Examples:

Value1 = 0

Value2 = 1

IF &variable = Value2

 &variable = Value1

ELSE

 &variable = Value2

The statement accepts numeric or alphabetic values. A numeric compare is

performed on numeric data. When scan encounters a comma (even if it is followed

TPRX001 ’Invalid number ’ .TYPE=N NOKANA

’The value entered is not a positive whole number.’

TPRX002 ’Invalid price ’ .TYPE=N NOKANA

’The value entered is not in the form $xx.yy’

TPRX003 ’Quoted price too low ’ .TYPE=N NOKANA

’The quoted price cannot be lower than &LPRICE’

TPRX004 ’Quoted price too high ’ .TYPE=N NOKANA

’The quoted price cannot be greater than &HPRICE’

TPRX009 ’Not available ’ .TYPE=A .W=NORESP NOKANA

’This application is not available to user &ZUSER’

*REXX statement

266 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

immediately by an another comma or a right parenthesis) it assumes a value is

given. The TOG value will be assigned a blank in this case. For example:

 TOG(S,fld1,test,) value1 = ’ ’ value2 = 1

 TOG(S,fld1,test,,) value1 = ’ ’ value2 = ’ ’

 TOG(S,fld1,test) value1 = 0 value2 = 1 (both will use defaults)

If the TOG is in single mode, a check is made to determine if the data has been

modified. If it has been modified, then the TOG is performed.

If the TOG is in multiple mode, and a check determines that the data has been

modified, then:

v If the field contained a character at the last display and it has not been changed

to a blank, the TOG is not performed.

v If the field contained a blank and now contains a character, the TOG is

performed.

This is to ensure the selection is not deselected by a different character. Only by

blanking the field should the variable be deselected.

The TOG statement example in Figure 71 uses both single and multiple mode

combinations. The single mode TOG statements are prefaced with IF statements

and are performed based on the IF statement condition. The multiple mode TOG

statements are not conditional. They are performed with each pass through this

processing section.

The VEDIT statement

The VEDIT statement identifies the variables on which ISPF must do mask

validation. The VEDIT statement should precede all other)PROC statements that

involve variables, such as the VER statement or the VPUT statement. It must

precede any statements that refer to a VMASKed variable. A VEDIT statement

must be coded for all masked variables defined in the panel. An example is shown

in Figure 72 on page 268.

 VEDIT (variable [,MSG=value])

)PROC

IF (&CLS = 1)

 TOG (S,CLS,&CHSPORT,’0’,’1’)

IF (&CLS = 2)

 TOG (S,CLS,&CHSEDAN,’0’,’1’)

IF (&CLS = 3)

 TOG (S,CLS,&CHLUXRY,’0’,’1’)

IF (&PERFMOD ^= ’ ’)

 &PERFMOD = ’/’

 &PERFORM = ’MODERATE’

ELSE &PERFORM = ’0’

TOG (M,PERFMOD,&CHPERFO,’0’,’1’)

IF (&PERFSUP ^= ’ ’)

 &PERFSUP = ’/’

 &PERFORM = ’SUPER’

ELSE &PERFORM = ’0’

TOG (M,PERFSUP,&CHSUPER,’0’,’1’)

IF (&PERFULT ^= ’ ’)

 &PERFULT = ’/’

 &PERFORM = ’ULTRA’

ELSE &PERFORM = ’0’

TOG (M,PERFULT,&CHULTRA,’0’,’1’)

)END

Figure 71. TOG statement example

TOG statement

Chapter 7. Panel definition statement reference 267

where:

variable

Specifies the name of a dialog variable, whose value is to be verified against

the mask pattern specified by the VMASK service.

MSG=value

Optional. Can be set to a message ID in the processing section to cause a

message to be displayed.

The VER statement

Use the verify statement, VER, to check that the current value of a variable meets

some criteria. Typically, it is used in the processing section to verify the data stored

in a dialog variable. Verification of an input variable value is performed after the

value has been stored in the variable pool. The current rules for padding,

justification, and VDEFINE apply to the value stored in the pool. Table 15 on page

269 and the associated text describe the types of verification provided by ISPF.

The syntax of the VER statement supports the VSYM built-in function in the

variable parameter. In addition, the verification processing for the types DSNAME,

DSNAMEF, DSNAMEFM, DSNAMEPQ, and DDSNAMEQ resolves system

symbols within the variable name and updates the variable in the panel field.

Therefore, there is no need to include VSYM within the variable parameter on the

VER statement when you specify any one of these DSNAME types.

Example:

VER(VSYM(X),NAME,MSG=ABC123)

)ATTR DEFAULT(%+_)

 @ TYPE(INPUT) INTENS(LOW)

)BODY

%-------------------------------TEST PANEL-----------------------------

%COMMAND ===>_ZCMD

%

+ PHONE %===>@CVAR + (999)999-999

+ TIME %===>@FVAR + HH:MM

+

+

+

+

+ Press%ENTER+to leave this panel

)INIT

)PROC

 VEDIT (CVAR)

 VEDIT (FVAR)

)END

Figure 72. VEDIT example

VEDIT statement

268 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

|
|
|
|
|
|

|

|

Table 15. Types of verification provided by ISPF

VER (variable [NONBLANK] keyword [,MSG=value])

 ALPHA

 ALPHAB

 BIT

 DBCS

 DSNAME

 DSNAMEF

 DSNAMEFM

 DSNAMEPQ

 DSNAMEQ

 EBCDIC

 ENUM

 FILEID

 HEX

 IDATE

 INCLUDE[,IMBLK],value1[,value2]

 IPADDR4

 ITIME

 JDATE

 JSTD

 LEN,relational-operator,expected-length

 LIST,value1[value2...]

 LISTV,varlist

 LISTVX,varlist

 LISTX,value1,value2,...

 MIX

 NAME

 NAMEF

 NUM

 PICT,string

 PICTCN,mask-character,field-mask,string

 RANGE,lower,upper

 STDDATE

 STDTIME

where:

variable

Name of the variable to be checked.

NONBLANK

Optional keyword. Specifies that the variable must contain a value and not all

blanks. NONBLANK, or NB, can be specified with another type verification,

such as ALPHA, NUM, or HEX. Do this by specifying the NONBLANK

keyword after the variable name but before the other keyword. Example:

VER (&A,NB,PICT,NNN-NNNN)

is equivalent to:

VER (&A,NONBLANK)

VER (&A,PICT,NNN-NNNN)

If the variable does not meet the verification criteria, ISPF displays a message.

The message can be specified in the MSG=value parameter, where value is a

message ID. If no message is specified, an ISPF-supplied message is displayed,

based on the type of verification. Even if a VER fails, processing of the panel’s

)PROC and)REINIT statements is performed.

keyword

Specifies the verification criteria. One of these keywords must be specified:

VER statement

Chapter 7. Panel definition statement reference 269

|

ALPHA

The variable must contain only lowercase or uppercase alphabetic

characters (A-Z, a-z, #, $, or @). Blanks are not allowed.

ALPHAB

The variable must contain only lowercase or uppercase alphabetic

characters (A-Z or a-z). Blanks are not allowed.

BIT

The variable must contain all zeros and ones.

DBCS

The variable must contain only valid DBCS characters.

DSNAME

The variable must contain a valid TSO data set name. A data set name

qualifier must begin with an alphabetic character (A-Z, $, @, or #). The

remaining characters must be either uppercase alphanumeric or a hyphen

(-). A period is used to connect each qualifier in the data set name.

 ISPF first determines if the TSO/E NOPREFIX PROFILE option is in use. If

it is, ISPF does use a prefix in the calculation of the data set length. A

maximum of 44 characters can be entered for a data set name, if that data

set name is enclosed in quotes. If the TSO/E NOPREFIX PROFILE option

is in use, a maximum of 44 characters can be entered for a data set name

when it is not enclosed within quotes. If the TSO/E NOPREFIX PROFILE

option is not in use, a maximum of 42 characters can be entered for a data

set name, not enclosed in quotes. ISPF uses the minimum data set prefix of

two characters (one character and a period separator) during its calculation

of the data set name length.

Note: The verification processing for DSNAME resolves system symbols

within the variable name and updates the variable in the panel field.

Therefore, when you specify the verification type DSNAME, there is

no need to include VSYM within the variable parameter on the VER

statement.

DSNAMEF

 This parameter provides the same function as DSNAME with the

additional feature that asterisks (*) and percent signs (%) can be used

within the qualifiers. You can use DSNAMEF to filter a list of data sets.

 A single asterisk within a qualifier indicates that zero or more characters

can occupy that position. Consecutive asterisks are not valid within a

qualifier.

 A single percent sign indicates that any one alphanumeric or national

character can occupy that position. One to eight percent signs can be

specified in each qualifier.

Note: The verification processing for DSNAMEF resolves system symbols

within the variable name and updates the variable in the panel field.

Therefore, when you specify the verification type DSNAMEF, there

is no need to include VSYM within the variable parameter on the

VER statement.

DSNAMEFM

This parameter provides the same function as DSNAMEF, but asterisks (*)

and percent signs (%) can only be used within a member name, not within

the qualifiers. You can use DSNAMEFM to filter members in a data set.

VER statement

270 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

|
|
|
|
|

|
|
|
|
|

A single asterisk within a member name indicates that zero or more

characters can occupy that position.

 A single percent sign indicates that any one alphanumeric or national

character can occupy that position. One to eight percent signs can be

specified in each member name.

Note: The verification processing for DSNAMEFM resolves system

symbols within the variable name and updates the variable in the

panel field. Therefore, when you specify the verification type

DSNAMEFM, there is no need to include VSYM within the variable

parameter on the VER statement.

DSNAMEPQ

 This parameter provides the same function as DSNAMEQ, except if the

TSO data set name starts with a parenthesis and no closing parenthesis is

found, DSNAMEPQ adds the closing parenthesis and the end quote.

Note: The verification processing for DSNAMEPQ resolves system

symbols within the variable name and updates the variable in the

panel field. Therefore, when you specify the verification type

DSNAMEPQ, there is no need to include VSYM within the variable

parameter on the VER statement.

DSNAMEQ

This parameter provides the same function as DSNAME with the

additional feature that if the TSO data set name starts with a quotation

mark and no ending quotation mark is found, DSNAMEQ adds the ending

quotation mark for you.

Note: The verification processing for DSNAMEQ resolves system symbols

within the variable name and updates the variable in the panel field.

Therefore, when you specify the verification type DSNAMEQ, there

is no need to include VSYM within the variable parameter on the

VER statement.

EBCDIC

The variable must contain only valid EBCDIC characters.

ENUM

The variable can contain, in addition to numeric characters:

 Plus sign (+)

 Negative number indicators

 Delimiter symbols

 Decimal symbol (.)

 Certain national language decimal symbol (,).

ISPF ignores leading blanks. Blanks between characters (except the French

language delimiter) and trailing blanks are not allowed. This includes

blanks between leading or trailing signs and the adjacent character. Use of

any characters other than those listed results in ISPF issuing an appropriate

error message.

The ENUM parameter allows verification of a numeric variable that has

been expressed in a more natural style. ISPF verifies variable values for

correct decimal and comma notation plus correct sign placement.

VER statement

Chapter 7. Panel definition statement reference 271

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

Negative number indicators include a leading or trailing minus sign and a

number enclosed by parentheses. The decimal and delimiter symbols can

vary according to national language. The negative number indicators are

common to all national languages.

 Use of delimiter symbols is optional. However, if they are used, ISPF

validates the delimiter symbols beginning at the left-most symbol that it

finds in the variable being verified. In case of an invalid placement or

omission of a delimiter symbol, ISPF issues an appropriate error message.

 Use of the decimal symbol is optional. A maximum of one decimal symbol

is allowed. If used, the decimal must be correctly placed in relation to any

delimiter symbols used. Delimiter symbols are not allowed to the right of a

decimal symbol. In case of an invalid placement of a decimal symbol, ISPF

issues an appropriate error message. Table 16 illustrates decimal and

delimiter symbol use for each of the national languages supported by ISPF.

 Table 16. Decimal and delimiter symbols

Language Whole Fractional

Danish 999,999.88 0.789

English 999,999.88 0.789

French 999.999,88 0,789

German 999.999,88 0,789

Italian 999.999,88 0,789

Japanese 999,999.88 0.789

Korean 999,999.88 0.789

Portuguese 999.999,88 0,789

Spanish 999.999,88 0,789

Traditional Chinese 999,999.88 0.789

Simplified Chinese 999,999.88 0.789

Swiss-German 999.999,88 0,789

 The variable being verified can contain leading blanks. Any trailing blanks

in the variable’s value in the variable pool cause a verify error condition.

Trailing blanks result from defining the variable by using the VDEFINE

service with the NOBSCAN option specified. These trailing blanks are not

overlaid when the variable is updated by a panel operation if the

corresponding panel field has a justification attribute of LEFT or ASIS.

Note: ISPF treats fields containing the nonnumeric characters allowed

when using VER ENUM as character fields. To use these fields in

numeric operations, an installation can need to provide a routine to

convert the fields from character to numeric data. The ISPF

VDEFINE exit routine is one option available for incorporating these

conversion routines.

Table 17 shows examples of results when verifying variable values

(English) with the ENUM keyword specified.

 Table 17. Verifying variable values with the ENUM keyword specified

Value Results Reason

+2574 Valid Leading plus sign is allowed

VER statement

272 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Table 17. Verifying variable values with the ENUM keyword specified (continued)

Value Results Reason

-2574 Valid Leading minus sign allowed

25.74 Valid Decimal allowed

.2574 Valid Leading decimal allowed

2,574 Valid Delimiter character allowed (but not required)

(2,574) Valid Alternate method of showing a negative value

allowed

2574- Valid Trailing minus sign allowed

2574+ Invalid Trailing plus sign not allowed

-2574- Invalid Double negative indication not allowed

(2,574) Invalid Two errors; blanks not allowed between either sign

indicator and the adjacent character

35,543785 Invalid If used, the delimiter character must be inserted at

every appropriate point (35,543,785)

4,5932.673 Invalid Delimiter must be positioned in relation to decimal

(45,932.673)

33.452.78 Invalid Only one decimal allowed in numeric field

8.364,798 Invalid Delimiter not allowed to right of decimal

FILEID

The variable must contain a valid file ID in CMS syntax. The file name and

file type, if given, must be from 1-8 alphanumeric characters, including

A-Z, 0-9, $, #, @, +, - (hyphen), : (colon), and _ (underscore). The filemode

must be a single letter (A-Z), optionally followed by a single digit (0-9). In

addition, one or more fields of the fileid can be an asterisk (*) or a string of

characters followed by an asterisk. For example:

tr* status All files having a file name beginning with the letters tr

and having a file type of status.

* exec All files having a file type of exec.

HEX

The variable must contain only hexadecimal characters (0-9, A-F, a-f).

IDATE

The international date (IDATE) format contains 8 characters, including the

national language date delimiter. The format represents a date expressed in

a 2-digit year (YY), month (MM), and day (DD). Valid values for YY are

00-99. Valid values for MM are 01-12. Valid values for DD are 01-31. ISPF

verifies for a valid date and national language date delimiter. For the

United States, the format is YY/MM/DD.

INCLUDE [,IMBLK],value1[,value2]

Defines a list of value parameters, each specifying the character types a

verify field is allowed to contain.

IMBLK

Optional positional subparameter. Indicates that the variable is allowed

to contain embedded blanks. Any leading or trailing blank characters

are ignored.

value1,value2

Specifies ALPHA, ALPHAB, or NUM; at least one value must be

VER statement

Chapter 7. Panel definition statement reference 273

specified. The specification of two different values are combined and

indicate to ISPF that the field can contain data of either type. ISPF

issues an error message if more than two values are specified.

 Example:

)PROC

 VER (&vara,NB,INCLUDE,IMBLK,ALPHAB,NUM,MSG=NSL001)

 VER (&varb,NB,INCLUDE,IMBLK,NUM,MSG=NSL002)

 VER (&varc,NB,INCLUDE,ALPHA,NUM,MSG=NSL003) ...

This example illustrates that the variable vara can contain any alphabetic

(A-Z or a-z) or numeric character as well as embedded blanks; varb can

contain numeric characters only and embedded blanks; and variable varc

can only contain alphabetic characters (A-Z, a-z, #, $, or @) and numeric

characters (0-9), but no embedded blanks.

IPADDR4

The variable must contain a valid IP (Internet Protocol) address in dotted

decimal notation (as the decimal representation of four 8-bit values,

concatenated with dots). For example, 128.2.7.9 is a valid IP version 4

address. The first octet (8-bit value) can range from 0 to 223 in decimal

notation. The remaining three octets of the IP version 4 address can range

from 0 to 255 in decimal notation. IPADDR4 verifies standard IP version 4

IP addresses. IPADDR4 does not support Classless Inter-Domain Routing

(CIDR) notation.

ITIME

The international date (ITIME) format contains 5 characters, including the

national language time delimiter. The format represents a date expressed in

a 2-digit hour (HH), and a 2-digit minute (MM). Valid values for HH are

00-23. Valid values for MM are 00-59. For the United States, the format is

HH:MM.

JDATE

The Julian date (JDATE) format contains 6 characters, including the period

(.) delimiter. The format represents a date expressed in a 2-digit year (YY),

and a 3-digit day of the year (DDD). Valid values for YY are 00-99. Valid

values for DDD are 001-365 (or 001-366 for leap years). The format is

YY.DDD.

JSTD

The Julian standard date (JSTD) format contains 8 characters, including the

period (.) delimiter. The format represents a date expressed in a 4-digit

year (YYYY), and a 3-digit day of the year (DDD). Valid values for YYYY

are 0000-9999. Valid values for DDD are 001-365 (or 001-366 for leap years).

The format is YYYY.DDD.

LEN,relational-operator,expected-length

The length of the variable (number of characters) must satisfy the

condition expressed by the relational operator and expected length.

 You can use the LEN function in a panel’s)INIT,)REINIT, or)PROC

section to verify the number of characters (bytes) in a variable that is

currently residing in the variable pool.

 For DBCS character strings the number of bytes in the string is twice the

number of characters.

VER statement

274 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

relational-operator

Valid relational operators are:

= or EQ Equal to

< or LT Less than

> or GT Greater than

<= or LE Less than or equal

>= or GE Greater than or equal

¬= or NE Not equal

¬> or NG Not greater than

¬< or NL Not less than.

You can specify the relational operator either as a special symbol (=, <,

and so forth) or as a character symbol (EQ, LT, and so forth) expressed

in uppercase. A relational operator can be expressed either as a literal

value (remember to enclose special symbol values in quotes) or as a

dialog variable containing the value.

expected-length

The expected-length operand is a positive number having a maximum

of 5 characters, with which ISPF compares the number of characters in

the variable data. Like the relational operator, the expected-length

operand can be expressed as a literal value or as a dialog variable

containing the value.

 Example:

VER (&NAME,LEN,‘<=’,8)

This statement verifies that the number of characters defining the value

of variable &NAME is less than or equal to 8.

 Example:

VER (&NAME,LEN,NG,&SIZE)

This statement verifies that the number of characters defining the value

of variable &NAME is not greater than the value of dialog variable

&SIZE

 When input fields are stored in their corresponding dialog variables,

any keyed leading or trailing pad characters associated with right or

left justification of the variable field are deleted before being stored.

 The length of a variable, used by ISPF for comparison, is the total

number of characters in the variable as it is currently stored in the

variable pool. Thus, for a variable created using the VDEFINE service

with NOBSCAN specified, any trailing blanks are included in the

length value used for comparison.

 If a variable has been defined using the VDEFINE service but currently

has no value, ISPF uses a length value of zero for comparison.

LIST,value1,value2, ...

The variable must contain one of the listed values. The maximum number

of listed values allowed is 100.

LISTV,varlist

Allows the use of a variable containing a list of values to be used for

variable field verification.

VER statement

Chapter 7. Panel definition statement reference 275

varlist

When defined within the panel, this is the name of a variable,

preceded by an &, that contains a list of values that will be compared

to the value contained in the verify variable. The varlist variable can

contain up to 100 values. Each value in the varlist variable must be

delimited by a comma or at least one blank. A value in the varlist

variable containing any of these special characters should be enclosed

in single quotes (’ ’):

 Blank < (+ |) ; ¬ - , > : =

 To specify the ampersand character in a value contained in the varlist

variable, or a period in a value contained in the varlist variable when it

immediately follows a dialog variable name, you must double these

characters. To specify the single quote character in a value contained in

the varlist variable, use two single quote characters enclosed within

single quotes (’’).

 If the varlist is set in the dialog, use the notation that is correct for the

programming language used to code the dialog.

 Example:

)PROC ...
 VER (&areacode,NONBLANK,LISTV,&varlist,MSG=NSL011) ...

The variable specified in the VER LISTV variable parameter must be set

before being referenced in the statement. (The variable used in the

previous example could have been assigned these values in the)INIT

section of the panel definition.)

 &varlist =’919 914 212’

Note: To have quotes as part of an assignment, you must double the

number of quotes used in each previous layer. For example:

 &list1 = ‘one o‘‘ne‘ yields one o‘ne

 &list2 = ‘two t‘‘‘‘wo‘ yields two t‘‘wo

LISTVX,varlist

The LISTVX (“varlist exclude”) keyword enables you to specify a variable

containing a list of values that the field variable must not contain. If

LISTVX is used, the keyword NONBLANK is implied. The varlist follows

the same rules as the varlist for LISTV.

LISTX,value1,value2,...

The LISTX (“list exclude”) keyword enables you to list values that the field

variable must not contain. If LISTX is used, the keyword NONBLANK is

implied. The maximum number of listed values allowed is 100.

MIX

The variable must contain all valid DBCS, EBCDIC, shift-in, and shift-out

characters.

NAME

The variable must contain a valid name, following the rules of member

names, up to eight alphanumeric characters (A-Z, #, $, @, 0-9). The first

character must be alphabetic (A-Z, $, @, or #).

NAMEF

VER statement

276 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

This parameter provides the same function as NAME with the additional

feature that asterisks (*) and percent signs (%) can be used within the

qualifiers. You can use DSNAMEF to filter a list of data sets.

 A single asterisk within a qualifier indicates that zero or more characters

can occupy that position. Consecutive asterisks are not valid within a

qualifier.

 A single percent sign indicates that any one alphanumeric or national

character can occupy that position. One to eight percent signs can be

specified in each qualifier.

NUM

The variable must contain all numeric characters (0-9). However, leading

blanks are acceptable.

PICT,string

The variable must contain characters that match the corresponding type of

character in the picture string. The string parameter can be composed of

these characters:

C any character

A any alphabetic character (A-Z, a-z, #, $, @)

N any numeric character (0-9)

9 any numeric character (same as N)

X any hexadecimal character (0-9, A-F, a-f)

In addition, the string can contain any special characters that represent

themselves. For example:

VER (xxx,PICT,‘A/NNN’)

In this example, the value must start with an alphabetic character, followed

by a slash, followed by 3 numeric characters. The length of the variable

value and the picture string must be the same. Trailing blanks are not

included.

PICTCN,mask-character,field-mask,string

 The VER statement keyword PICTCN, with its three parameters, enables

you to check a variable for specific constants within the variable.

VER (variable,PICTCN,mask-character,field-mask,string)

variable

Name of the variable to be checked.

mask-character

Any special character that represents itself. If you select one of

these special characters as a mask-character, the mask-character

and the field-mask containing the mask-character must be enclosed

in quotes:

¬ ’not’ symbol

= equal sign

. period

> greater than symbol

< less than symbol

) right parenthesis

(left parenthesis

‘ single quote

Note: The mask-character cannot be one of the picture string

characters (C, A, N, 9, X, c, a, n, x).

VER statement

Chapter 7. Panel definition statement reference 277

field-mask

A combination of constants and the mask-character. The field-mask

is used to audit the string. For example, your mask-character is a

slash mark (/) and the constants are V, R, and M in the positions

shown: ’V//R//M//’. A single quote can be used as a constant

but avoid using a mask-character that must be enclosed in single

quotes when a single quote is a constant.

string

 A combination of constants and picture string characters. The

picture string characters can be:

C any character

A any alphabetic character (A-Z, a-z, #, $, @)

N any numeric character (0-9)

9 any numeric character (same as N)

X any hexadecimal character (0-9, A-F, a-f)

 The picture string characters must be in the positions indicated by

the mask-character in the field-mask parameter. For example,

’VNNRNNMNN’.

 The three parameters mask-character, field-mask, and string can be

dialog variables.

 Examples

 In this VER PICTCN statement the mask-character is the not symbol (¬),

the constants are V,R, and M. The picture string characters are N (any

numeric character 0-9). If fld1 = V10R20M00 it passes the verification. If

fld1 = V10R20M0Y it fails because Y is not a numeric character.

VER (&fld1,PICTCN,’¬’,’V¬¬R¬¬M¬¬’,VNNRNNMNN)

In this VER PICTCN statement the mask-character is the asterisk (*), the

constants are O and S. The picture string characters are N (any numeric

character 0-9) and A (any alphabetic character A-Z, a-z,#,$,@). If fld1 =

OS390R8 it passes verification. If fld1 = OS39018 it fails because 1 is not an

alphabetic character.

VER (&fld1,PICTCN,*,OS*****,OSNNNAN)

RANGE,lower,upper

The variable must contain all numeric characters (0-9). It can also contain a

leading plus (+) or minus (−). Its value must fall within the specified

lower and upper limits, which can be either positive or negative. The

length of the specified variable is limited to 16 digits, in addition to the

plus or minus sign. Further, the lower and upper parameters can consist of

no more than 16 digits each, in addition to the plus or minus sign, if used.

Any characters in excess of the 16 allowed are truncated.

STDDATE

The standard date (STDDATE) format contains 10 characters, including the

national language date delimiter. The format represents a date expressed in

a 4-digit year (YYYY), 2-digit month (MM), and a 2-digit day (DD). Valid

values for YYYY are 0000-9999. Valid values for MM are 01-12. Valid values

for DD are 01-31. ISPF verifies for a valid date and national language date

delimiter. For the United States, the format is YYYY/MM/DD.

VER statement

278 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

STDTIME

The standard time (STDTIME) format contains 8 characters, including the

national language time delimiter. The format represents a time expressed in

a 2-digit hour (HH), 2-digit minute (MM), and a 2-digit second (SS). Valid

values for HH are 00-23. Valid values for MM are 00-59. Valid values for SS

are 00-59. For the United States, the format is HH:MM:SS.

MSG=value

value contains the message issued if the current value of the variable does not

meet the criteria being checked.

For all tests except NONBLANK, LISTX, and LISTVX, a blank value is acceptable.

That is, if you enter a value, or leave a nonblank initial value unchanged, it must

conform to the specified condition. If a variable value is stored as all blanks, the

value passes any verification test except NONBLANK.

Figure 73 on page 280 shows a sample panel with VER statements to verify that

information entered meets these criteria:

v The truncated value of TYPECHG is N, U, or D.

v The three name variables, LNAME, FNAME, and I, contain all alphabetic

characters.

v The PHA (area code) field contains all numeric characters and a length of 3.

v The PHNUM (local number) field contains 3 numeric characters followed by a

hyphen, followed by 4 numeric characters.

For the TYPECHG test, a message ID has been specified in the event that the test

fails. In all the other cases, an ISPF-provided message is displayed if the variable

fails the verification test.

VER statement

Chapter 7. Panel definition statement reference 279

The VGET statement

The VGET statement copies variables from the shared or application profile

variable pool or from system symbols.

 VGET name-list [ASIS|SHARED|PROFILE|SYMDEF] [SYMNAMES(symname-list)]

where:

name-list Specifies one or more dialog variables, separated by commas or

blanks, whose values are to be copied from the shared or

application profile pool or from system symbols. The names are

passed in standard name-list format. A name-list of more than one

name must be enclosed in parentheses.

ASIS Variable values are to be copied from the shared variable pool, if

found there; otherwise, they are to be copied from the application

profile pool. ASIS is the default value.

SHARED Variable values are to be copied from the shared variable pool.

PROFILE Variable values are to be copied from the application profile

)BODY

 %---------------------------- EMPLOYEE RECORDS ------------------------

 %COMMAND===>_ZCMD %

 +

 %EMPLOYEE SERIAL: &EMPSER

 +

 + TYPE OF CHANGE%===>_TYPECHG + (NEW, UPDATE, OR DELETE)

 +

 + EMPLOYEE NAME:

 + LAST %===>_LNAME +

 + FIRST %===>_FNAME +

 + INITIAL%===>_I+

 +

 + HOME ADDRESS:

 + LINE 1 %===>_ADDR1 +

 + LINE 2 %===>_ADDR2 +

 + LINE 3 %===>_ADDR3 +

 + LINE 4 %===>_ADDR4 +

 +

 + HOME PHONE:

 + AREA CODE %===>_PHA+

 + LOCAL NUMBER%===>_PHNUM +

 +

)INIT

 IF (&PHA = ‘ ’)

 &PHA = 301

 &TYPECHG = TRANS (&TYPECHG N,NEW U,UPDATE D,DELETE)

)PROC

 &TYPECHG = TRUNC (&TYPECHG,1)

 VER (&TYPECHG,LIST,N,U,D,MSG=EMPX210)

 VER (&LNAME,ALPHAB)

 VER (&FNAME,ALPHAB)

 VER (&I,ALPHAB)

 VER (&PHA,LEN,‘=’,3)

 VER (&PHA,NUM)

 VER (&PHNUM,PICT,‘NNN-NNNN’)

)END

Figure 73. Sample panel definition with verification

VGET statement

280 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

variable pool. ISPF deletes any shared pool variables having the

same name, even if they do not exist in the application profile

pool.

SYMDEF The values for the variables defined by name-list are to be obtained

from the system symbols.

SYMNAMES(symname-list)

symname-list lists the names of one or more system symbols that

are to be obtained. It is specified in the same format as the

name-list parameter. Where symname-list is omitted, the system

symbols obtained are the same as those specified on the name-list

parameter.

 One reason why you might use the SYMNAMES parameter is that

some system symbols may have the same name as a reserved or

read-only dialog variable. In this case you must specify a different

variable name in name-list and specify the actual symbol name in

symname-list. For example, you could specify this command to

obtain the current value for the static symbol SYSCLONE and store

it in a variable named CLONE:

VGET (CLONE) SYMDEF SYMNAMES(SYSCLONE)

If there are fewer symbol names in symname-list than names in the

name-list, then the symbol names are used from the symname-list

until there are no more corresponding symbol names, then the

remaining names in the name-list are used. In other words, if there

are five names in name-list and only three symbol names, the

symbol names are used for the first three symbols and the last two

names in the name-list are used for the remaining symbols.

 If the number of symbol names in symname-list exceeds the number

of names in name-list, a severe error occurs.

 This is an optional parameter. It is only valid when the SYMDEF

parameter is also specified.

Notes:

1. The length of the constructed VGET statement can not exceed 255 characters.

2. Specifying a non-modifiable variable in a VGET statement in a selection panel

results in a severe error.

DISPLAY service panel

When processing a DISPLAY or TBDISPL service request, ISPF normally searches

for dialog variable values in the order:

1. Function pool

2. Shared pool

3. Application profile pool

To give you control over the pool from which ISPF retrieves variable values, the

VGET statement in a panel’s)INIT,)REINIT, or)PROC section allows you to

specify that ISPF is to copy one or more variable values from either the shared

pool or application profile pool to the function pool. If one or more of these

variables already exist in the function pool, their values are updated with the

values of the corresponding variables accessed by the VGET statement. Any of

these variables that do not exist in the function pool are created and updated with

the values of those accessed by the VGET statement.

VGET statement

Chapter 7. Panel definition statement reference 281

Examples:

)PROC

 VGET (XYZ ABC) PROFILE

This VGET statement in a panel’s)PROC section causes the current values for

variables XYZ and ABC to be copied from the profile pool and updated in the

function pool and used as the variable values for display of a panel field. If XYZ

and ABC do not already exist in the function pool, they are created then updated.

)PROC

 VGET (LHHMMSS) SYMDEF

This VGET statement causes the current value for the dynamic system variable

LHHMMSS to be obtained.

)PROC

 VGET (LTIME) SYMDEF SYMNAMES(LHHMMSS)

This VGET statement causes the current value for the dynamic system variable

LHHMMSS to be placed in the dialog variable LTIME.

SELECT service panel

At the time ISPF processes a SELECT service request, there is no function pool.

Therefore, ISPF normally searches for dialog variable values in the order:

1. Shared pool

2. Profile pool

When specified on a selection panel, the VGET statement functions as follows:

v If the variable value is taken from the profile pool, the shared pool value, if it

exists, is deleted.

v Otherwise, the VGET statement has no effect.

Further processing of the variables on the selection panel, other than by the VGET

statement, is described in “SELECT service and variable access” on page 62.

Here is an example of a VGET statement on a selection panel, where the specified

variable exists in both the shared and profile pools:

VGET FNAME PROFILE

This statement causes ISPF to retrieve the current value of variable FNAME from

the profile pool and display it in the corresponding panel field. Any updates to the

variable are made to the profile pool. ISPF deletes the variable from the shared

pool.

The VPUT statement

While variables entered from a panel are automatically stored in the function

variable pool, variables can also be stored in the shared and profile variable pools

by VPUT statements used in the)INIT,) REINIT,)ABCINIT,)ABCPROC, or)PROC

sections of the panel definition.

 VPUT name-list [ASIS|SHARED|PROFILE]

where:

name-list Specifies the names of one or more dialog variables whose values

are to be copied from the function pool to the shared or profile

pool.

VGET statement

282 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

ASIS Specifies that the variables are to be copied to the pool in which

they already exist or that they are to be copied to the shared pool,

if they are new. If the variables exist in both the shared and profile

pools, they are copied only to the shared pool.

SHARED Specifies that the variables are to be copied to the shared pool.

PROFILE Specifies that the variables are to be copied to the application

profile pool. Any shared pool variables with the same names are

deleted.

Note: The length of the constructed VPUT statement can not exceed 255

characters.

Example:

)PROC

 VPUT (XYZ ABC) PROFILE

This statement causes current values for variables XYZ and ABC to be stored in the

profile pool by a VPUT operation.

The syntax for the VPUT statement is the same as that for the VPUT service when

it is invoked from a command procedure except that the ISPEXEC command verb

is omitted.

The VSYM statement

The VSYM statement updates the value of dialog variables found in the function

pool by resolving the values of any system symbols. This includes all system static

symbols and dynamic symbols and any user-defined static symbols. The z/OS MVS

Initialization and Tuning Reference has details on system static and dynamic symbols.

Consult your system programmer for any locally defined user symbols as these are

system and installation dependent.

 VSYM name-list

where:

name-list Specifies the names of one or more dialog variables whose values

in the function pool are to be processed to resolve system symbols.

The names are passed in the standard name-list format.

Note: The length of the constructed VSYM statement can not exceed 255

characters.

Example:

 VSYM (DSNL)

Using ISPF control variables

Control variables are used to control and test certain conditions pertaining to the

display of a panel or message. Only those that apply to displays are discussed

here. They can be used only in the)INIT,)REINIT, and)PROC sections of a panel

definition.

These control variables are described:

v .ALARM: see “.ALARM” on page 285

VPUT statement

Chapter 7. Panel definition statement reference 283

|

|
|
|
|
|
|

||
|

|

||
|
|

|
|

|

|

|

v .ATTR: see “.ATTR and .ATTRCHAR” on page 286

v .ATTRCHAR: see “.ATTR and .ATTRCHAR” on page 286

v .AUTOSEL: see “.AUTOSEL” on page 289

v .CSRPOS: see “.CSRPOS” on page 289

v .CSRROW: see “.CSRROW” on page 290

v .CURSOR: see “.CURSOR” on page 290

v .HELP: see “.HELP” on page 292

v .MSG: see “.MSG” on page 292

v .NRET: see “.NRET” on page 293

v .PFKEY: see “.PFKEY” on page 294

v .RESP: see “.RESP” on page 294

v .TRAIL: see “.TRAIL” on page 295

v .ZVARS: see “.ZVARS” on page 295

Control variables are automatically reset to blank when the panel display service

first receives control. If .MSG, .CURSOR, and .CSRPOS are still blank after

processing of the initialization section, they are set to the values passed by the

calling sequence, if any, for an initial message or cursor placement. Under certain

conditions, processing of the initialization section is bypassed.

Once .CURSOR, .CSRPOS, .MSG, and .RESP have been set to nonblank by panel

processing, they retain their initial values until the panel is displayed, or

redisplayed, at which time they are reset.

The control variables

 .ALARM

 .AUTOSEL

 .CURSOR

 .HELP

 .MSG

 .PFKEY

 .RESP

have a length of 8 bytes. When set in an assignment statement to a longer value,

the value is truncated. If these control variables are tested in a conditional

expression, the compare value (literal or dialog variable) must not be longer than

8 bytes.

Figure 74 on page 285 shows an example in which both .HELP and .CURSOR have

been set in the)INIT section of the panel definition.

Using ISPF control variables

284 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

.ALARM

The .ALARM control variable can be set in an assignment statement within the

)INIT,)REINIT, or)PROC sections to control the terminal alarm.

 .ALARM = value

where:

value YES, NO, a blank, or null.

YES Causes the terminal alarm to sound when the panel is displayed.

NO Causes the terminal alarm to be silent when the panel is displayed.

blank Causes the terminal alarm to be silent when the panel is displayed.

null Causes the terminal alarm to be silent when the panel is displayed.

Note: value can also be a variable containing the value YES, NO, a blank

or null.

Examples:

)BODY

 %---------------------------- EMPLOYEE RECORDS ------------------------------

 %COMMAND===>_ZCMD %

 +

 %EMPLOYEE SERIAL: &EMPSER

 +

 + TYPE OF CHANGE%===>_TYPECHG + (NEW, UPDATE, OR DELETE)

 +

 + EMPLOYEE NAME:

 + LAST %===>_LNAME +

 + FIRST %===>_FNAME +

 + INITIAL%===>_I+

 +

 + HOME ADDRESS:

 + LINE 1 %===>_ADDR1 +

 + LINE 2 %===>_ADDR2 +

 + LINE 3 %===>_ADDR3 +

 + LINE 4 %===>_ADDR4 +

 +

 + HOME PHONE:

 + AREA CODE %===>_PHA+

 + LOCAL NUMBER%===>_PHNUM +

 +

)INIT

 .HELP = PERS032

 .CURSOR = TYPECHG

 IF (&PHA = ‘ ’)

 &PHA = 301

 &TYPECHG = TRANS (&TYPECHG N,NEW U,UPDATE D,DELETE)

)PROC

 &TYPECHG = TRUNC (&TYPECHG,1)

 VER (&TYPECHG,LIST,N,U,D,MSG=EMPX210)

 VER (&LNAME,ALPHAB)

 VER (&FNAME,ALPHAB)

 VER (&I,ALPHAB)

 VER (&PHA,NUM)

 VER (&PHNUM,PICT,‘NNN-NNNN’)

)END

Figure 74. Sample panel definition with control variables

.ALARM Control Variable

Chapter 7. Panel definition statement reference 285

.ALARM = YES

 .ALARM = &ALRM

In the first example, the .ALARM setting is YES, which causes the terminal alarm

to sound when the panel is displayed. In the second example, the alarm setting can

be turned on (YES) or off (NO) according to the current value of the variable

ALRM. If the panel is displayed with a message that has .ALARM = YES, the

alarm sounds regardless of the setting of .ALARM within the panel assignment

statement.

Control variable .ALARM can also appear on the right side of an assignment

statement. For example:

&ALRM = .ALARM

might be used to save the setting of .ALARM in variable ALRM.

.ATTR and .ATTRCHAR

See:

v “.ATTR”

v “.ATTRCHAR” on page 287

v “Using .ATTR and .ATTRCHAR with table display panels” on page 288

v “Things to remember when using attribute override control variables” on page

288

.ATTR

The .ATTR control variable can be set in the)INIT,)REINIT, or)PROC section to

allow attributes to be changed on a field basis.

 .ATTR (field) = ‘keyword (value),keyword (value)....’

where:

field Can be:

v The name of any input or output field that occurs in the panel body or

area section.

v The .CURSOR control variable, which indicates the field where the

cursor is currently positioned.

v The name of a dialog variable, preceded by an ampersand. The variable

must contain the name of an input or output field that occurs in the

panel body, .CURSOR, or a blank.

keyword (value)

A legitimate attribute keyword and value for that attribute.

Examples:

 .ATTR (.CURSOR) = ‘COLOR(YELLOW) HILITE(REVERSE)’

 .ATTR (&FLD) = ‘HILITE(&HLTE)’

 .ATTR (&FLD) = ‘PAS(ON)’

In the first example, the color and highlighting of the field containing the cursor is

overridden. In the second example, the name of the field whose highlighting

attribute is to be overridden is found in dialog variable FLD and the highlighting

value is in variable HLTE.

.ALARM Control Variable

286 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Overriding the cursor field (.CURSOR) and the alternate long or short message

field attributes can be particularly useful if the panel is being redisplayed because

of a translation or verification failure. When such a failure occurs, the cursor is

automatically placed on the field in error and the message ID to be displayed is

automatically placed in the message area.

For example, if SMFIELD is specified on the)BODY statement as the alternate

short message field, a)REINIT section could be specified as follows:

)REINIT

 .ATTR (.CURSOR) = ‘COLOR(RED) HILITE(USCORE)’

 .ATTR (SMFIELD) = ‘HILITE(BLINK)’

This will cause the field in error to be redisplayed in red and underscored, and the

error message to blink.

Only the specified attributes are overridden. Any other attributes associated with

the field remain in effect.

When a field attribute is overridden in the)INIT section of a panel, the override

remains in effect if the panel is redisplayed (unless the attribute is again

overridden by another statement in the)REINIT section). However, an attribute

override in the)PROC or)REINIT section of the panel remains in effect only for a

single redisplay of that panel, should a redisplay occur. This allows one field at a

time to be highlighted as errors are found. Once the user corrects the error, the

field reverts to its normal attributes.

.ATTRCHAR

The .ATTRCHAR control variable can be set in the)INIT,)REINIT, or)PROC

section to override attributes for all fields related to an existing attribute character.

 .ATTRCHAR(<char)=‘keyword(value),keyword(value)’

where:

char Can be:

v One of the special characters, one-digit character, or two-digit

hexadecimal codes used to denote attribute characters within the panel.

v The name of a dialog variable, the value of which must contain an

attribute character, two-digit hexadecimal code, or a blank.

char follows the rules for literals. That is, it must be enclosed in single

quotes if it contains any of the special characters listed in “Using variables

and literal expressions in text fields” on page 115.

keyword (value)

A legitimate attribute keyword and value for that attribute.

When a field attribute is overridden in the)INIT section of a panel, the override

remains in effect if the panel is redisplayed unless the attribute is again overridden

by another statement in the)REINIT section. However, an attribute override in the

)PROC or)REINIT section of the panel remains in effect only for a single redisplay

of that panel, should a redisplay occur.

See “Relationship to Control variables .ATTR and .ATTRCHAR” on page 207 for a

description of appropriate and inappropriate override conditions for CUA and

basic panel-element attributes.

.ATTR and .ATTRCHAR Control Variables

Chapter 7. Panel definition statement reference 287

Using .ATTR and .ATTRCHAR with table display panels

The effect that an attribute override has on a table display panel depends on

whether the override is permanent (overridden in the)INIT section) or temporary

(overridden in the)REINIT or)PROC section). If the attribute override for a field

or attribute character in the scrollable section of a panel is:

v Permanent, the override for the specified field or character is effective for every

model set displayed

v Temporary, the override for the specified field or character is effective for only

the last selected model set processed

Any scrolling activity performed when temporary overrides are in effect causes the

affected attributes to be cleared, including any temporary overrides in the fixed

portion of the panel, and the original attributes to be put into effect. In addition, if

a table is redisplayed after model sets have been selected and a scroll has taken

place, any .ATTR or .ATTRCHAR temporary overrides are not put into effect.

Things to remember when using attribute override control

variables

v The .ATTR or .ATTRCHAR control variable cannot appear on the right side of

an assignment statement.

v Several characteristics (for example, INTENSITY, COLOR, and CAPS) can be

changed with one attribute override statement. However, only one field can be

changed by a single .ATTR statement, and only one attribute character or

hexadecimal code can be changed by a single .ATTRCHAR statement.

v The TYPE keyword can be overridden by .ATTR or .ATTRCHAR. You can

change the TYPE:

from INPUT/CUA input types to OUTPUT/CUA output types

from OUTPUT/CUA output types to INPUT/CUA input types

from TEXT/CUA text types to TEXT/CUA text types

from DATAIN to DATAOUT

from DATAOUT to DATAIN

Exceptions: CUA TEXT types AB, ABSL, PS, RP

However, if you attempt to change the TYPE of a field from TEXT to INPUT, a

dialog error will result.

See “Relationship to Control variables .ATTR and .ATTRCHAR” on page 207 for

a description of appropriate and inappropriate override conditions for CUA and

basic panel-element attributes.

v The command field or scroll amount field cannot be changed to TYPE(OUTPUT)

by an attribute override assignment.

v The first .ATTR assignment that is encountered within a panel section for a

particular field is the one that is honored. Subsequent .ATTR assignments for

that field are ignored. In this example, FIELD1 will be blue and FIELD2 will be

yellow:

)INIT

 .ATTR(FIELD1) = COLOR(BLUE)

 .ATTR(FIELD2) = COLOR(YELLOW)

 .ATTR(FIELD1) = COLOR(RED)

v Similarly, the first .ATTRCHAR assignment that is encountered within a panel

section for a particular attribute character or hexadecimal code is the one that is

honored.

v Be careful when overriding the pad character. Since the string of overridden

attribute keywords is in quotes, the new pad character must be specified either

without quotes or in double quotes, as follows:

.ATTR and .ATTRCHAR Control Variables

288 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

.ATTR(FIELD1) = ‘PAD($)’

 .ATTR(FIELD2) = ‘PAD(‘’*‘’)’

v If both an .ATTRCHAR assignment and an .ATTR assignment apply to the same

field, the .ATTR assignment takes precedence.

Example:

)BODY ...
%===>_FIELD1 +

)INIT

 .ATTRCHAR(_) = ‘COLOR(YELLOW)’

 .ATTR(FIELD1) = ‘COLOR(WHITE)’

)REINIT

 IF (.MSG ¬= ‘ ’)

 .ATTR(FIELD1) = ‘COLOR(RED) HILITE(BLINK)’

 .ATTRCHAR(_) = ‘COLOR(BLUE)’

)PROC

 VER(&FIELD1,NB)

)END

When this panel is initially displayed, FIELD1 will be white and all other input

fields will be yellow. If the panel is redisplayed with a message, FIELD1 will be

blinking red and all other input fields will be blue. If the panel is redisplayed

without a message, FIELD1 will revert to white, and all other input fields will

revert to yellow.

.AUTOSEL

The .AUTOSEL control variable is used in conjunction with table display panels to

specify auto-selection.

 .AUTOSEL = YES | NO

where:

YES Indicates that if the CSRROW parameter or control variable is specified,

the row is to be retrieved even if the user did not explicitly select the row.

This is called auto-selection.

NO Indicates that if the CSRROW parameter or control variable is specified,

the row is to be retrieved only if the user explicitly selects the row by

entering data in the corresponding model set on the screen.

If the CSRROW parameter or control variable is not specified, .AUTOSEL is

ignored. .AUTOSEL can be set in the)INIT or)REINIT section. Any assignment

made to .AUTOSEL in the)PROC section is ignored.

.CSRPOS

The .CSRPOS control variable can be set in the)INIT or)REINIT section and

controls where in a field the cursor is to be set.

 .CSRPOS = integer

 variable = .CSRPOS

where:

integer

Specifies the position in the field to which the cursor is set. This position

applies regardless of whether the cursor placement was specified using the

.ATTR and .ATTRCHAR Control Variables

Chapter 7. Panel definition statement reference 289

CURSOR calling sequence parameter, the .CURSOR control variable in the

)INIT or)REINIT section, or the default cursor placement. If

cursor-position is not specified or is not within the field, the default is one,

the first position of the field.

The .CSRPOS control variable can appear on the right side of an assignment

statement, making it act like a function. Thus, the cursor field name and its

position within a field can be stored in variables.

Example:

&CPOS = .CSRPOS

In the preceding statement, the position (an integer value) of the cursor within the

input or output field or area is returned in variable CPOS.

.CSRROW

The .CSRROW control variable is used in conjunction with table display panels.

 .CSRROW = CRP-number

 variable = .CSRROW

where:

CRP-number

Table current-row-pointer number corresponding to the model set on the

display where the cursor is to be placed. If the specified row does not have a

corresponding model set displayed on the screen, the cursor is placed at the

command field. The row will be auto-selected under either of these conditions:

v If the CSRROW parameter is specified on the TBDISPL service either

without AUTOSEL(NO) being specified on TBDISPL or .AUTOSEL(NO)

specified as a panel definition statement.

v If the .CSRROW control variable is specified as a panel definition statement

either without AUTOSEL(NO) being specified on TBDISPL or

.AUTOSEL(NO) specified as a panel definition statement.

The .CSRROW control variable can appear on the right side of an assignment

statement, making it act like a function. Thus, the table row number corresponding

to the model set on the display where the cursor is to be placed can be stored in a

variable.

Example:

&CROW = .CSRROW

.CURSOR

The .CURSOR control variable can be set in the)INIT or)REINIT section to control

the placement of the cursor.

 .CURSOR = string

 variable = .CURSOR

where:

string A character string that matches a field name or a DYNAMIC or GRAPHIC

area name in the panel body. Its value cannot be a character string that

.CSRPOS Control Variable

290 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

matches a scrollable area name, but it can be a character string that

matches a field name within the scrollable area.

Example:

 .CURSOR = DSN

This example causes the cursor to be placed at field DSN. This variable is

automatically set to the field last referred to whenever .MSG is set explicitly or

indirectly by TRANS or VER statements. The .CURSOR control variable overrides

any cursor position specified on the DISPLAY or TBDISPL service request.

Note: In GUI mode, .CURSOR can be set only to an input or pushbutton

(point-and-shoot) field. If the application attempts to set the cursor to any

other field, ISPF ignores the placement and uses the default cursor

placement.

The .CURSOR control variable can appear on the right side of an assignment

statement, making it look like a function.

Example:

&CNAME = .CURSOR

If the control variable .CURSOR is not explicitly initialized, or if it is set to blank,

the initial field where the cursor is positioned (default placement) is determined as

follows:

1. The panel body is scanned from top to bottom, and the cursor is placed at the

beginning of the first input field that meets these conditions:

v It must be the first or only input field on a line.

v It must not have an initial value; that is, the corresponding dialog variable

must be null or blank.

v It must not have a field name of ZCMD.
2. If the stated criteria are not met in the panel body, the scrollable areas are

searched using the same criteria.

3. If the criteria are still not met, the cursor is placed on the first input field in the

panel body or scrollable area, usually the command field.

4. If the panel has no input fields, the cursor is placed at the upper-left corner of

the screen.

The cursor is automatically placed at the beginning of the field that was last

referred to in any panel definition statement when a message is displayed because

of:

v A verification failure that sets .MSG

v A .MSG=value condition in a TRANS

v An explicit setting of .MSG

Examples:

&XYZ = TRANS (&A ... MSG=xxxxx)

&A = TRANS (&XYZ ... MSG=xxxxx)

VER (&XYZ,NONBLANK) VER (&B,ALPHA)

Assume that field XYZ exists in the panel body, but there are no fields

corresponding to variables A or B. In all the preceding examples, the cursor would

be placed on field XYZ if a message is displayed.

.CURSOR Control Variable

Chapter 7. Panel definition statement reference 291

.HELP

The .HELP control variable can be set in the initialization section to establish a

tutorial (extended help) panel to be displayed if the user enters the HELP

command.

 .HELP = panelname

variable = .HELP

where:

panelname Name of the tutorial panel to be displayed.

Example:

 .HELP = ISPTE

This example causes tutorial panel ISPTE to be displayed when the user enters the

HELP command.

The .HELP control variable can appear on the right side of an assignment

statement, making it act like a function.

.HHELP

The .HHELP control variable can be set in the initialization section to establish a

tutorial (extended help) panel to be displayed if the user enters the HELP

command from within HELP.

 .HHELP = panelname

where:

panelname Name of the tutorial panel for help to be displayed.

Example:

 .HHELP = ISP00006

This example causes tutorial panel ISP00006 to be displayed when the user enters

the HELP command from HELP. This also happens to be the default setting. The

Dialog Tag Language generates the setting .HHELP = ISP00006 for any help panels

it builds.

.MSG

The .MSG control variable can be set to a message ID, typically in the processing

section, to cause a message to be displayed.

 .MSG = msgid

variable = .MSG

where:

msgid The message ID of the message to be displayed.

Example:

 .MSG = ISPE016

.HELP Control Variable

292 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

This variable is automatically set by use of the MSG=value keyword on a TRANS

statement if there is no match with the listed values, or on a VER statement if the

verification fails.

The .MSG control variable can appear on the right side of an assignment

statement, making it act like a function.

.NRET

On enabled panels, the .NRET key retrieves the library names from the current

library referral list or data set, or workstation file name from the current data set

referral list. Unlike some othe dot variables, .NRET can be assigned multiple times

in panel logic.

 .NRET = ON|OFF|DSN|LIB

where:

ON Sets the NRETRIEV command table entry active.

OFF Sets the NRETRIEV command table entry inactive.

DSN Tells ISPF that the NRETRIEV command retrieved a name from the current

data set referral list.

LIB Tells ISPF that the NRETRIEV command retrieved a name from the current

library referral list.

Other values are reserved by ISPF. No messages are given in case of an assignment

that is not valid.

When .NRET is used as the source for an assignment statement it always returns a

null.

The user is responsible for assigning NRETRIEV to a PF key. NRETRIEV is

normally inactive but can be made active by using the .NRET=ON assignment in

the)INIT and)REINIT section of a panel. If it is turned on, .NRET=OFF must be

executed in the)PROC section of the panel. Failure to turn off .NRET in the)PROC

section of the panel can lead to errors when the NRETRIEV key is pressed on

subsequent panels.

NRETRIEV sets these variables in the FUNCTION pool:

 Variable Function

ZNRPROJ Project name

ZNRGRP1 First group name

ZNRGRP2 Second group name

ZNRGRP3 Third group name

ZNRGRP4 Fourth group name

ZNRTYPE Type name

ZNRMEM Member name

ZNRODSN Other data set name

ZNRVOL Volume associated with the other data set name

ZNRLIB Successful library retrieve (YES or NO)

.MSG Control Variable

Chapter 7. Panel definition statement reference 293

Variable Function

ZNRDS Successful data set retrieve (YES or NO)

ZNRWSN Workstation name indicator for other data set name

(H = Host, W = Workstation)

.PFKEY

The .PFKEY control variable is set to a value that reflects the function key pressed

by a user while the panel is being displayed.

 .PFKEY = value

variable = .PFKEY

where:

value The function key (F01-F24) pressed by a user.

The value of .PFKEY can be examined in the)PROC section of the panel and

copied into dialog variables through use of assignment statements. If no function

key is pressed by the user, .PFKEY contains blanks. .PFKEY is blank during

processing of the)INIT and)REINIT sections.

The .PFKEY control variable can appear on the right side of an assignment

statement, making it act like a function.

.RESP

The .RESP control variable indicates normal or exception response on the part of the

user.

 .RESP = ENTER | END

variable = .RESP

where:

ENTER

Normal response. ISPF always sets .RESP to ENTER unless the user enters

an END or RETURN command.

END Exception response. ISPF sets .RESP to END if the user enters an END or

RETURN command.

The value in .RESP can be tested in the processing section to determine the user’s

response.

Example:

IF (.RESP = END)

Setting .RESP in the)INIT or)REINIT section of the panel definition has no effect

if a message is being displayed.

The)INIT or)REINIT section can be coded with these statements to ensure that the

panel is not displayed, regardless of whether a message was specified on the

DISPLAY service request.

.NRET Control Variable

294 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Example:

)INIT or)REINIT

 IF (.MSG ¬= &Z)

 .MSG = &Z

 .RESP = END

This variable can be set in a panel processing section to force an END or ENTER

response. This can be useful if a verification has failed (or .MSG was set) and you

want that panel to be redisplayed with the message even if the user entered END

or RETURN.

The .RESP control variable can appear on the right side of an assignment

statement, making it act like a function.

.TRAIL

The .TRAIL control variable contains the remainder following a truncate (TRUNC)

operation.

 variable = .TRAIL

where:

variable Assigned the value in .TRAIL.

If the contents of a variable are truncated to a specified length, all remaining

characters are stored in .TRAIL. If the contents of a variable are truncated at the

first occurrence of a special character, the remaining characters following the

special character are stored in .TRAIL.

.ZVARS

The .ZVARS control variable can be set in the initialization section to a list of

variable names that correspond to Z place-holders in the body and/or model lines.

 .ZVARS = var | ’(varlist)’

variable = .ZVARS

where:

var Name that corresponds to a Z place-holder.

varlist One or more variable names that correspond to Z place-holders.

The .ZVARS control variable can appear on the right side of an assignment

statement, making it act like a function.

Using Z variables as field name place-holders

In the body and area sections of a panel definition and in the model lines for a

table display panel, the name of an input or output field can be represented by the

single character Z. This serves as a place-holder; the actual name of the field is

defined in the initialization section of the panel definition.

Use of place-holders allows the definition of short fields for which the lengths of

the variable names exceed the lengths of the fields.

The actual names of these fields are assigned in the initialization section of the

panel definition. The names are in a name list, enclosed in parentheses if more

.RESP Control Variable

Chapter 7. Panel definition statement reference 295

than one name is specified, assigned to the control variable .ZVARS. The first name

in the list corresponds to the first Z place-holder that appears in the body or model

lines. The second name in the list corresponds to the second Z, and so forth.

In the example shown in Figure 75, the input field labeled TYPE is 1 character long

and the next two input fields are each 2 characters long. The names of these three

fields are TYPFLD, LNGFLD, and OFFSET, respectively.

 The name list assigned to .ZVARS must be enclosed in single quotes because the

list contains special characters (parentheses) and blanks. As with other name lists,

either commas or blanks can be used to separate the names in the list. .ZVARS can

also be set to a dialog variable that has a valid name list as its value. For example:

 .ZVARS = &NLIST

where the value of &NLIST is (TYPFLD LNGFLD OFFSET). See “Defining the area

section” on page 166 for the description of how to use Z place-holders in scrollable

panel areas.

)BODY

 ---------------------------- TITLE LINE ------------------------------------

 %COMMAND===>_ZCMD %

 % .

 .

 .

 .

 + TYPE %===>_Z+ (A for alpha, N for numeric)

 + LENGTH%===>_Z + (0 to 99)

 + OFFSET%===>_Z + (0 to 99)

 .

 .

 .

)INIT

 .ZVARS = ’(TYPFLD LNGFLD OFFSET)’

Figure 75. Example of Z variable place-holders

.ZVARS Control Variable

296 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 8. ISPF help and tutorial panels

Online help and tutorial panels are a set of panels that a developer can include to

provide online information for an application user. Help and tutorial panels can

contain information that is helpful to a first-time user. They also can instruct a user

to take specific actions based on a particular condition that has occurred during the

application processing.

All ISPF help panels that are created using the Dialog Tag Language display in a

pop-up window. ISPF help panels created using the ISPF panel source statements

and containing the WINDOW keyword on the panel’s)BODY statement also

display in a pop-up window. If field-level help is being displayed, the ISPF help

facility attempts to position the pop-up window relative to the object field.

The width and depth values specified on the HELP tag or on the WINDOW

keyword must be valid for the device on which these help panels are displayed.

See the z/OS ISPF Dialog Tag Language Guide and Reference for details on the HELP

tag. For details on the WINDOW keyword, see 209.

You can provide several types of help or tutorial panels. The ISPF tutorial is

included with the product.

Extended help (panel help)

Provides general information about the contents of a panel. The

information in extended help can be an overall explanation of items on the

panel, an explanation of the panel’s purpose in the application, or

instructions for the user to interact with the panel.

 See the description of the .HELP variable in “.HELP” on page 292 for more

information.

Field-level help

Provides help panels for fields defined on an application panel.

 When the user enters the HELP command, ISPF displays the help panel

defined for the field on which the cursor is located.

 You may define field-level help for action bar choices and pull-down

choices, as well as for fields within the panel body. If you are creating

panels with field level help using Dialog Tag Language, refer to the z/OS

ISPF Dialog Tag Language Guide and Reference for a description of the tag

attributes you should use. Otherwise, for more information about defining

the)HELP section of the panel, refer to “Defining the HELP section” on

page 222.

HELP FOR HELP

Provides help for using the help or tutorial facility.

Keys help

Provides a brief description of each key defined for a panel. See “Keys

help” on page 95 for more information about keys help.

Message help

Provides help for ISPF messages. See “How to define a message” on page

308 for more information.

© Copyright IBM Corp. 1980, 2007 297

Reference phrase help

Provides help for reference phrases. See “Reference phrase help” on page

96 for more information.

Tutorial

Describes the ISPF product. The tutorial is included with ISPF. See “The

ISPF tutorial panels” on page 301 for more information.

TUTOR command

Provides a direct path to specific tutorial panels, in effect indexing Help

hierarchies by panel identifiers.

Processing help

You can request help from an application panel or a help panel. You can also

specify a keylist to be associated with a help panel.

Help requests from an application panel

When the user enters the HELP command, ISPF displays a help or tutorial panel

according to this sequence:

1. When a short message appears on an application panel and the user requests

HELP, ISPF displays the long message.

2. If a long message is on the screen and the user requests HELP, ISPF checks to

see if message help is defined.

v If message help is defined, ISPF displays that panel. If the user requests help

from the message help panel, the Help Tutorial panel is displayed.

v If message help is not defined, ISPF checks to see if field-level help is

defined for the field on which the cursor is located.

– If field-level help is defined, ISPF displays that panel. If the user requests

HELP from the field-level help panel, the Help Tutorial panel is displayed.

– If field-level help is not defined, ISPF checks for panel help.

- If panel help is defined, ISPF displays that panel. If the user requests

HELP from the panel help panel, the Help Tutorial panel is displayed.

- If panel help is not defined, ISPF displays the first panel within the

application’s tutorial.
3. When an application panel has been displayed and the user requests HELP,

ISPF checks to see if field-level help is defined for the field on which the cursor

is located.

v If field-level help is defined, ISPF displays that panel. If the user requests

HELP from the field-level help panel, the Help Tutorial panel is displayed.

v If field-level help is not defined, ISPF checks for panel help.

– If panel help is defined, ISPF displays that panel. If the user requests

HELP from the panel help panel, the Help Tutorial panel is displayed.

– If panel help is not defined, ISPF displays the first panel within the

application’s tutorial.

Figure 76 on page 299 illustrates the panel flow for help according to the ISPF

search sequences.

298 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Keys help request from an application panel

When an application panel is displayed and the user requests KEYSHELP, ISPF

displays the keys help panel (provided that keys help is defined).

If the panel contains a short message or long message and the user requests

KEYSHELP, ISPF displays the keys help panel without following the search

sequence as illustrated in Figure 76.

Extended help request from an application panel

When an application panel is displayed and the user requests EXHELP, ISPF

displays the extended help panel (provided that extended help is defined).

If the panel contains a short message or long message and the user requests

EXHELP, ISPF displays the extended help panel without following the search

sequence as illustrated in Figure 76.

Figure 76. Help panel flow

Chapter 8. ISPF help and tutorial panels 299

Help available from a help panel

This list describes the ISPF help facilities available when a help panel or tutorial

panel is displayed:

v If the user requests HELP from any help or tutorial panel, ISPF displays the help

for help panel defined by the .HHELP control variable. If the variable is not

defined, then ISPF displays the Help Tutorial panel.

v If the user requests EXHELP from any help or tutorial panel (except from the

extended help panel), ISPF displays extended help.

v If the user requests KEYSHELP from any help or tutorial panel (except the keys

help panel), ISPF displays keys help.

v If the help panel contains a reference phrase, and the user requests HELP while

the cursor is positioned on a reference phrase, ISPF displays the reference phrase

help panel defined. When a reference phrase help panel is canceled, the help

panel from which reference phrase help was requested is redisplayed. All other

help facilities are available from a reference phrase help panel.

Ending help

When the user requests END or EXIT from any help panel (except the Help

Tutorial panel), ISPF returns to the original application panel. If the user requests

END or EXIT from the Help Tutorial panel, ISPF returns to the previous panel.

If the user requests CANCEL from any help or tutorial panel, ISPF returns to the

previous panel.

ISPF default keylist for help panels

You can specify a keylist to be associated with a help panel by using the keylist

attribute on the HELP tag (DTL) or by using the)PANEL statement in your panel

definition. If you do not specify a keylist, ISPF uses the keys defined for ISPHELP

to display in the function area of the help panel when it is displayed.

The key settings and forms for ISPHELP are shown in Table 18. For more

information about keylists, refer to the ″Settings (option 0)″ topic in the z/OS ISPF

User’s Guide Vol II.

 Table 18. ISPHELP key settings

Key Command Form

F1 HELP Short

F2 SPLIT Long

F3 EXIT Short

F5 EXHELP Short

F6 KEYSHELP Short

F7 UP Long

F8 DOWN Long

F9 SWAP Long

F10 LEFT Long

F11 RIGHT Long

F12 CANCEL Short

300 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

The ISPF tutorial panels

A tutorial panel is a special type of panel that is processed by the ISPF tutorial

program. This program invokes the panel display service to display the panel.

A user invokes the ISPF program that displays tutorial panels in four ways:

v As an option from a menu

v Directly or indirectly from any non-tutorial panel by entering the HELP

command or by pressing the function key assigned to the HELP command.

v By selecting a choice from a Help pull-down

v Through the use of the TUTOR command

Transfer into and out of the tutorial using the HELP command is transparent (no

action required) to ISPF functions.

ISPF tutorial panels are arranged in a hierarchy. Generally, this hierarchy is a table

of contents, each succeeding level of which contains a more detailed list of topics.

When the tutorial is entered from a menu, the first panel to be displayed is usually

the top of the hierarchy. The name of the first panel is passed as a parameter to the

ISPTUTOR program.

When the tutorial is entered by use of the HELP command, the first panel to be

displayed is a panel within the hierarchy, appropriate to what you were doing

when help was requested.

When viewing the tutorial, you can select topics by entering a selection code or by

simply pressing Enter to view the next topic. On any panel, you can also enter

these commands:

BACK or B To return to the previously viewed panel

SKIP or S To advance to the next topic

UP or U To display a higher-level list of topics

TOC or T To display the table of contents

INDEX or I To display the tutorial index

Note: If you enter the UP command after viewing a portion of a tutorial

sequentially and if you do not select a new topic from the displayed list,

you can resume the tutorial at the next sequential topic on the list by

entering the NEXT command or by pressing Enter.

You can use these keys whenever you are in the tutorial:

ENTER To display the next sequential page or scroll a scrollable help panel

HELP To redisplay this page for help information

END To terminate the tutorial

UP To display a higher level list of topics (rather than typing UP)

DOWN To skip to the next topic (rather than typing SKIP)

RIGHT To display the next page (rather than pressing Enter) or to scroll a

scrollable help panel

LEFT To display the previous page (rather than typing BACK) or to

scroll a scrollable help panel

Chapter 8. ISPF help and tutorial panels 301

When running under tutorial and trying to scroll past the end of the scrollable

area, a message will be displayed indicating that no more information is available

in the scrollable area. If RIGHT or ENTER is pressed again, ISPF will follow the

normal tutorial flow and display the next help panel if one has been defined. The

same is true when scrolling to the TOP of the scrollable AREA; a message

indicating that no more information is available will be displayed, and if LEFT is

pressed, the previous tutorial panel will be displayed if one has been defined.

Cursor positioning usually defines which scrollable area will be scrolled. However,

when in tutorial, if the cursor is not within a scrollable area, the first area defined

in the)BODY section will be scrolled. The LEFT and RIGHT commands should be

included in any keylist specified for a scrollable help panel.

If you issue the HELP command while viewing a tutorial, ISPF displays a tutorial

panel that contains a summary of commands that are available to the tutorial user.

When you end the tutorial, using the END or RETURN command, the panel from

which you entered the tutorial is displayed again.

The name of the top panel must be specified by dialog variable ZHTOP. The name

of the first index panel must be specified by ZHINDEX. It is recommended that

these two dialog variables be initialized at the beginning of the application to

ensure that the user can always display the tutorial top or index, regardless of how

the tutorial was entered. One way to initialize these variables is to set them from

the primary option menu, as shown in “Example of a primary option menu” on

page 127.

The index is optional. It is a collection of panels in which topics are arranged in

alphabetical order. You can jump to the index from any point by using the INDEX

command. The index need not be connected to the main tutorial hierarchy. It can

be a topic that you can select from the main table of contents or other panels. A list

of the last 20 tutorial panels displayed, including the current panel, is maintained

by ISPF. You should issue the TOP or INDEX command instead of the BACK

command if you want to view panels displayed before the last 20 panels.

Each tutorial panel must have a next selection input field. Generally, you should use

the name ZCMD for this field. A tutorial panel should also have a processing

section in which these variables are set:

ZSEL or SEL

Specifies the name of the next panel to be displayed based on the topic

selected by the user, by translating ZCMD to a panel name. The panel

name can be preceded by an asterisk (*) to indicate a topic that can be

explicitly selected by the user, but which is bypassed if the user presses

Enter to view the next topic.

 The maximum number of entries allowed is 100.

 If a panel does not have any selectable topics, omit ZSEL.

ZUP or UP

Specifies the name of the parent panel from which this panel was selected.

Generally, ZUP can be omitted since the tutorial program remembers the

sequence of selections that lead to the display of this panel. ZUP is used

only if this panel is the first to be displayed by a user entering the HELP

command, or if it is selected from the tutorial index and the user then

enters the UP command.

302 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

ZUP is ignored when it is defined in the top panel (defined by ZHTOP).

ZCONT or CONT

Specifies the name of the next continuation panel. If there is no

continuation panel, ZCONT should be omitted.

ZIND When set to a value of YES, specifies that a page in the tutorial is an index

page. For example:

)PROC

 &ZIND = YES

The ZIND variable is used only on index pages; it should not be set on

other tutorial panels.

Use variable names ZSEL, ZUP, and ZCONT. Variables SEL, UP, and CONT are

provided only for compatibility with the previous SPF product.

A panel cannot have both a continuation panel and selectable topics. However, the

last panel in a sequence of continuation panels can have selectable topics.

Help/tutorial panels can contain variables so that dialog information, including

information entered by a user, can be displayed on the help panel. Function

variables, as well as shared and profile variables, can be displayed.

Figure 77 shows a sample hierarchy of tutorial panels. Panels A and B have three

selectable topics each. Panels C and D2 have two selectable topics each. The other

panels have no selectable topics. Panel D1 has a continuation page (D2), and panel

F1 has two continuation pages (F2 and F3).

In Figure 77, assuming that panel A is the highest-level table of contents, the

viewer can get to A from any point by issuing the TOC command. A viewer

currently on panel F1, F2, or F3 can return to panel B by issuing the BACK

command. Then, from B, the SKIP command would take the viewer to panel C. If

the user enters the TUTOR command along with a panel identifier parameter, a

specific tutorial panel within the Help hierarchy is displayed. From that point on,

any movement within the hierarchy is the same as if the user had reached the

panel by any other means.

G H I J K

D1

D2

F1

F2

F3

E

A

B C

Figure 77. Sample tutorial hierarchy

Chapter 8. ISPF help and tutorial panels 303

Two sample tutorial panels are shown in Figure 78 and Figure 79 on page 305.

These are assumed to be panels B and F2, respectively, in the hierarchy in

Figure 77 on page 303.

 Panel B has three selectable topics. In the processing section, ZCMD is translated to

a panel name (E, F1, or G) corresponding to the selected option, and the result is

stored in ZSEL. If none of the valid options is selected, a question mark (?) is

returned as the translated string, which causes the tutorial program to display an

invalid option message.

Note that option 3 is translated to *G. This indicates that panel G is displayed if the

user selects option 3, but is bypassed if the user repeatedly presses Enter to view

each topic. The order in which topics are presented when Enter is pressed is the

same as the order in which they appear in the TRANS function. If option 3 is

selected, pressing the Enter key does not display the other topics.

In panel B, the name of the parent panel (A) is stored in variable ZUP.

 %TUTORIAL ------------------ 3270 DISPLAY TERMINAL --------------------TUTORIAL

 %NEXT SELECTION ===>_ZCMD +

+

 % -----------------------------------

 | General Information |

 | 3270 Key Usage |

 +

 The IBM 3270 display terminal has several keys which will assist you

 in entering information. These are hardware defined keys; they do not

 cause a program interruption.

+

 The following topics are presented in sequence,

 or can be selected by number:

+

 %1+ Insert and Delete Keys

 %2+ Erase EOF (to End-of-Field) Key

+

 The following topic will be presented only if

 explicitly selected by number:

+

 %3+ New Line and TAB Keys

+

)PROC

 &ZSEL = TRANS(&ZCMD 1,E 2,F1 3,*G *,’?’)

 &ZUP = A

)END

Figure 78. Sample tutorial panel definition (panel B)

304 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Panel F2 (Figure 79) has no selectable topics, but does have a continuation page.

The name of the continuation panel (F3) is stored in variable ZCONT. The name of

the parent panel (B) could have been stored in ZUP, but this was omitted assuming

that F2 cannot be directly entered by use of the HELP command or from the

tutorial index.

If you call ISPTUTOR from an edit macro, be sure to save and restore the

environment at that point. For example:

ISREDIT MACRO

ISPEXEC CONTROL DISPLAY SAVE

ISPEXEC SELECT PGM(ISPTUTOR) PARM(panel-id)

ISPEXEC CONTROL DISPLAY RESTORE

EXIT

 %TUTORIAL -------------------- ERASE EOF KEY ------------------- TUTORIAL

 %NEXT SELECTION ===>_ZCMD +

 +

 When the erase EOF (erase to end-of-field) key is used, it will appear

 to blank out the field. Actually, null characters are used in erasing

 to the next attribute byte, thus making it easy to use the insert

 mode, which requires null characters.

 +

 If the erase EOF key is pressed when the cursor is not within an input

 field, the keyboard will lock. Press the RESET key to unlock the

 keyboard.

 +

 You can try out the erase EOF key by entering data on line 2, then

 moving the cursor back over part or all of the data and pressing the

 key.

 +

 (Continued on next page)

 +

)PROC

 &ZCONT = F3

)END

Figure 79. Sample tutorial panel definition (panel F2)

Chapter 8. ISPF help and tutorial panels 305

306 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 9. Defining messages

This topic describes how to create and change ISPF messages. You can create

messages in two ways:

v Using the existing message definition.

v Using the MSG and MSGMBR tags of the Dialog Tag Language (DTL). See the

z/OS ISPF Dialog Tag Language Guide and Reference for more information about

these tags.

ISPF message definitions are stored in a message library and displayed by using

the DISPLAY, TBDISPL, or SETMSG service, written to the ISPF log file by the

LOG service, or copied to variables specified in a GETMSG service request. You

create or change messages by editing directly into the message library. ISPF

interprets the messages during processing. No compilation or preprocessing step is

required.

Note: When not in TEST mode, the most recently accessed message definitions are

retained in virtual storage for performance reasons. If you have modified a

message, using TEST mode will ensure that the updated version of the

message will be picked up by ISPF services. See “ISPF test and trace modes”

on page 27 for more information.

Several messages can be within each member of the message library. When using

the PDF editor to create a message file, prevent numbers from appearing in the file

by specifying NUMBER OFF.

The member name is determined by truncating the message ID after the second

digit of the number.

For example:

 Message ID Member Name

G015 G01

ISPE241 ISPE24

XYZ123A XYZ12

ABCDE965 ABCDE96

EMPX214 EMPX21

All messages that have IDs beginning with the characters G01, for example, must

be in member G01. Figure 80 on page 308 shows an example of a member in the

message library. This member contains all message IDs that begin with EMPX21.

© Copyright IBM Corp. 1980, 2007 307

How to define a message

Messages generally should appear in collating sequence by message ID. Each

message within the library consists of two required lines and (optionally)

additional long message lines. The additional lines can contain up to 512 bytes of

long message text. Figure 81 illustrates the syntax for defining messages.

msgid

Required. Each message is referred to by a message identifier (ID). A message

ID can be four to eight characters long. It is defined as follows:

v Prefix: one to five alphabetic characters (A-Z, #, $, or @)

v Number: three numeric characters (0-9)

v Suffix (optional): one alphabetic character.

If the prefix is five characters long, the suffix must be omitted so that the total

length does not exceed eight characters. Use the message ID suffix if more than

10 messages are to be included in one member.

EMPX210 ’INVALID TYPE OF CHANGE’ .HELP=PERSO33 .ALARM=YES

’TYPE OF CHANGE MUST BE NEW, UPDATE, OR DELETE.’

EMPX213 ’ENTER FIRST NAME’ .HELP=PERSO34 .ALARM=YES

’EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE=NEW OR UPDATE.’

EMPX214 ’ENTER LAST NAME’ .HELP=PERSO34 .ALARM=YES

’EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE=NEW OR UPDATE.’

EMPX215 ’ENTER HOME ADDRESS’ .HELP=PERSO35 .ALARM=YES

’EMPLOYEE NAME MUST BE ENTERED FOR TYPE OF CHANGE=NEW OR UPDATE.’

EMPX216 ’AREA CODE INVALID’ .ALARM=YES

’AREA CODE &PHA IS NOT DEFINED. PLEASE CHECK THE PHONE BOOK.’

EMPX217 ’&EMPSER ADDED’

’EMPLOYEE &LNAME, &FNAME &I ADDED TO FILE’

EMPX218 ’&EMPSER UPDATED’

’RECORDS FOR &LNAME, &FNAME &I UPDATED’

EMPX219 ’&EMPSER DELETED’

’RECORDS FOR &LNAME, &FNAME &I DELETED’

Figure 80. Sample messages

Line 1:

msgid [’short message’][.HELP=panel|*][.ALARM=YES|NO]

[NOKANA|KANA][.WINDOW=RESP|NORESP|LRESP|LNORESP]

[.TYPE=NOTIFY|WARNING|ACTION|CRITICAL]

Line 2:

’long message’ [+]

Additional long message text lines – optional

Line 3:

[’long message’ [+]]

Line 4:

[’long message’ [+]]

Line n:

[’long message’]

Figure 81. Example syntax for defining messages

308 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

short message

Optional. If a short message is specified on an ISPF panel, it is displayed first

(before the long message). Its maximum length is 24 bytes. The short message

is displayed in a pop-up window if the text is longer than will fit in the short

message area or if you defined a message window using the .WINDOW

keyword for the message. Otherwise, the short messages are right-justified and

displayed, with a high intensity attribute, either:

v At the right end of the first line on the screen, if an action bar is not defined

v At the right end of the line following the action bar

If the user enters the HELP command, the long message is displayed, with a

high intensity attribute. If the user enters the HELP command again, tutorial

mode is entered.

 The location of the short and long messages in a user-designed panel is

specified by the SMSG and LMSG keywords. These keywords are defined

under “Defining the body section” on page 209.

 When messages are written to the ISPF log file, both the short message, if any,

and the long message are written in the same output line. The short message

comes first, followed by the long message.

Note: For long or short messages in pop-up windows, if the message

originates from panel processing, such as a verification error message,

the message pop-up window is placed adjacent to the field that is the

object of the validation.

.LOG=YES

Optional. Ensures that ISPF will write a copy of the message to the ISPF log, if

it is allocated.

.HELP=panel | *

Optional. (Can be abbreviated to .H) If the user enters tutorial mode, the panel

name specified by .HELP is the first tutorial page displayed. If .HELP=* is

specified, the first tutorial page is the one specified in the panel definition, that

is, the panel on which this message is being displayed. The default is *.

NOKANA|KANA

Optional. The NOKANA keyword allows messages to contain lowercase

characters, and still display correctly on a Katakana terminal. Because

hexadecimal codes for some lowercase characters overlap those of some

Katakana characters, they would display as meaningless characters on a

Katakana terminal. If the NOKANA keyword is present in a message

definition, ISPF translates any lowercase message characters to uppercase

before displaying the message on a Katakana terminal.

 In summary, if the terminal is Katakana, and:

v KANA is specified, all characters are left as is.

v NOKANA is specified, lowercase characters are translated to uppercase.

v If neither KANA nor NOKANA is specified, all characters are left as is.

If the terminal is not Katakana, and:

v KANA is specified, lowercase characters are displayed as periods

v NOKANA is specified, all characters are left as is.

v If neither KANA nor NOKANA is specified, all characters are left as is.

Notes:

1. On non-Katakana terminals, the KANA keyword can be used to display

overlapping Katakana characters as periods rather than as meaningless

lowercase characters.

Chapter 9. Defining messages 309

2. On Katakana terminals, the NOKANA keyword is necessary in messages

containing lowercase English characters.

3. See Chapter 11, “Extended code page support,” on page 347 for the

discussion of the treatment of the KANA or NOKANA keywords if a

CCSID is specified.

.ALARM=YES|NO

Optional. (Can be abbreviated to .A) If .ALARM=YES is specified, the audible

alarm sounds when the message displays. If .ALARM=NO is specified, the

alarm does not sound unless .ALARM is set to YES in the panel definition. The

default is NO.

.WINDOW=RESP|NORESP|LRESP|LNORESP

Optional. (Can be abbreviated to .W) The .WINDOW keyword tells ISPF to

display the message in a message pop-up window.

 .WINDOW=RESP (R is a valid abbreviation for RESP) requests ISPF to display

both long and short messages in a message pop-up window that requires the

user to press Enter before data can be entered into the underlying panel. The

user cannot enter data or interact with the underlying panel until Enter (or

some other attention key) is pressed.

 .WINDOW=NORESP (N is a valid abbreviation for NORESP) requests ISPF to

display both long and short messages in a message pop-up window that does

not require direct user response. The user can enter data into the underlying

panel while this message is being displayed.

 .WINDOW=LRESP (LR is a valid abbreviation for LRESP) requests ISPF to

display only long messages in a message pop-up window that requires the

user to press Enter before data can be entered into the underlying panel. The

user cannot enter data or interact with the underlying panel until Enter (or

some other attention key) is pressed.

 .WINDOW=LNORESP (LN is a valid abbreviation for LNORESP) requests ISPF

to display only long messages in a message pop-up window that does not

require direct user response. The user can enter data into the underlying panel

while this message is being displayed.

 The MSGLOC parameter on the DISPLAY, TBDISPL, and SETMSG services

controls the placement of the message pop-up window. For messages that

originate from panel processing, such as a verification error message, the

message pop-up window is placed adjacent to the field which is the object of

the validation. The window placement will be such that it does not overlay the

object field, if possible. If no correlation can be made between the validation

and a field (such as when the variable being validated is not a panel field

name), the message pop-up window is displayed at the bottom of the logical

screen or below the active pop-up window, if one exists. See the sections on

these services in the z/OS ISPF Services Guide for a complete description of the

MSGLOC parameter.

.TYPE=NOTIFY|WARNING|ACTION|CRITICAL

Optional. (Can be abbreviated to .T) The .TYPE keyword in the message

definition identifies the type of message. There are four types of messages,

NOTIFY, WARNING, ACTION, and CRITICAL. N, W, A, and C are valid

abbreviations.

310 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Table 19 summarizes the characteristics of the different types of messages.

 Table 19. Message characteristics

Type Color Intensity Placement Response Alarm

NOTIFY White High

Message area or

pop-up window

Optional Off

WARNING Yellow High

Message area or

pop-up window

Optional On

ACTION Red High

Message area or

pop-up window

Optional On

CRITICAL Red High Pop-up window Required On

The .TYPE keyword overrides any .ALARM value that can be specified. A

.TYPE=CRITICAL message is always displayed as though .WINDOW=RESP

was specified. The defined color and highlighting characteristics apply to

messages displayed in the default short/long location and a pop-up message

window. The dialog application controls the field attributes for alternate

message location fields.

long message

Required. If a short message is not specified, the long message is automatically

displayed first, with a high intensity attribute, in the long message area or in a

message pop-up window. The long message is displayed in a pop-up window

if the text is longer than will fit in the long message area, if you defined a

message window using the .WINDOW keyword for the message, or if you

have selected this option on the Settings panel.

 The location of the short and long messages in a user-designed panel is

specified by the SMSG and LMSG keywords. These keywords are defined

under “Defining the body section” on page 209.

 The maximum length of the long message text is 512 bytes. If the message text

is greater than 512 bytes, it will be truncated. Messages greater than 78 bytes

require multiple long message lines. The continuation of the long message text

into additional lines is indicated by one or more spaces following the ending

quote (’) followed by a plus (+) sign. For example:

ISPX001 ’short message text’

’Long message text’ +

’ continued over ’ +

’multiple lines. The maximum length is ’ +

’512 bytes.’

For the best results, use the fewest number of message lines possible.

ISPX001 ’short message text’

’Long message text continued over multiple lines. The maximum’ +

’ length is 512 bytes.’

Consecutive SOSI characters resulting from multiple lines of DBCS data are

automatically removed. For example,

’Long messageSDBS’ +

 O I

’SCSSdata.’

 O I

Result: Long messageSDBCSSdata.

 O I

Chapter 9. Defining messages 311

The ending SI in the first record and the beginning SO in the second record are

automatically removed.

 When messages are written to the ISPF log file, both the short message, if any,

and the long message are written in the same output line. The short message

comes first, followed by the long message.

 The long message text will be written to multiple records if the text is greater

than 78 characters.

 Existing dialogs which have VDEFINEd the system variable ZERRLM as 78

characters should be updated to VDEFINE this variable as 512 characters.

Note: For long or short messages in pop-up windows, if the message

originates from panel processing, such as a verification error message,

the message pop-up window is placed adjacent to the field which is the

object of the validation.

Message display variations

The tables shown demonstrate various message display situations and the effect of

the .TYPE keyword and the PANEL DISPLAY CUA MODE field on the color and

highlighting of the message text. The variations are dependent on whether you

used the Dialog Tag Language (DTL) or the panel definition statements to define

your panels.

Note: If you are running in GUI mode, messages that would appear in a pop-up

window in non-GUI mode will be displayed in a message box. The message

box will include the appropriate icon as defined by CUA guidelines:

v .TYPE=NOTIFY produces an i in a circle, the international symbol for

information

v .TYPE=WARNING produces an exclamation point (!)

v .TYPE=ACTION or .TYPE=CRITICAL produces a red circle with a

diagonal line across it

If your dialog application panels are generated using the DTL, the dialog manager

displays the messages as shown in Table 20.

 Table 20. Message display using DTL

Message Definition Text Intensity

.TYPE=NOTIFY .ALARM=YES|NO White High

.TYPE=WARNING .ALARM=YES|NO Yellow High

.TYPE=ACTION .ALARM=YES|NO Red High

.TYPE=CRITICAL .ALARM=YES|NO Red High

.TYPE not specified .ALARM=NO White High

.TYPE not specified .ALARM=YES Yellow High

If your application panels are generated from the panel definition statements and

you use the default message placement, the dialog manager displays the messages

as documented in Table 21 on page 313.

312 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Table 21. Message display using panel definition statements

Message Definition Text Intensity

.TYPE=NOTIFY .ALARM=YES|NO White High

.TYPE=WARNING .ALARM=YES|NO Yellow High

.TYPE=ACTION .ALARM=YES|NO Red High

.TYPE=CRITICAL .ALARM=YES|NO Red High

.TYPE not specified .ALARM=NO CUA mode=YES White High

.TYPE not specified .ALARM=YES CUA mode=YES Yellow High

.TYPE not specified .ALARM=NO CUA mode=NO White High

.TYPE not specified .ALARM=YES CUA mode=NO White High

If you define your panels using the panel definition statements and you use an

alternate message placement, the dialog (using the field attributes) controls the

message text color and highlighting.

Messages tagged with CCSID

An ISPF message can be defined with .CCSID=xxxxx where xxxxx is the CCSID of

the EXTENDED CODE PAGE as defined by Character Data Representation

Architecture. See “Supported CCSIDs” on page 351 for which CCSIDs are

supported.

Panels or messages tagged with the CCSID keyword invoke the TRANS service.

The to CCSID is the value in ZTERMCID. This value is filled in during ISPF

initialization as the result of the terminal query done by ISPF. The from CCSID is

the CCSID entered following the CCSID keyword.

If the CCSID keyword is used, the characters in the message are translated to the

equivalent characters in the terminal code page for display. This translation occurs

only if the terminal has returned information to allow ISPF to determine its CCSID

and only if the code page indicated by the CCSID is different from the code page

of the terminal.

Note: The same CCSID is used for all messages within a message member.

Therefore, this keyword should be in the first record and start in the first

column of the message member. If the .CCSID keyword is not in the first

record or does not start in the first column of the first record, it is ignored

and character translation does not occur.

 All characters in the message member which are not short or long message text

must be in the Syntactic Character Set:

v A-Z

v a-z

v 0-9

v + < = > % & * ″ ’

v () , _ - . / : ; ?

 .CCSID=xxxxx

 ISPX001 ’short message text’

 ’Long message text’ +

 ’ continued over ’ +

 ’multiple lines. The maximum length is ’ +

 ’512 bytes.’

Chapter 9. Defining messages 313

The beginning and ending inhibited character tables are enhanced to include

characters from the extended code pages for the supported Asian Pacific languages

in formatting message text. The CCSID of the message is used to determine which

tables to use. If no CCSID is specified, the session language ID and terminal type

determine the tables used. See Chapter 11, “Extended code page support,” on page

347 and “Message pop-up text formatting.”

Modeless message pop-ups

ISPF allows you to cancel a modeless message pop-up by positioning the cursor

within the bounds of the message pop-up and requesting CANCEL or ENTER.

This allows you to remove the message pop-up without submitting the underlying

panel for processing.

For the cursor to be within the bounds of the message pop-up, it must be inside

the window frame of the message. Placing the cursor on the message window

frame does not result in the message window being canceled. Note that

asynchronous command processing is not suspended when the cursor is placed

inside a message window. Therefore, commands such as PRINT and SPLIT are

started when typed on the command line and Enter pressed, even if the cursor is

placed inside a modeless message pop-up window.

The HELP command will not display message help for a message window that has

been canceled.

Message pop-up text formatting

The message text is retrieved from the message member. If it is more than one line

(that is, if ISPF finds at least one blank and a plus sign following the closing quote)

the lines are concatenated, including blanks within or at the end of the text.

Trailing blanks are stripped from any variable values before the values are

substituted into the text string.

The width of the message pop-up window is determined based on the location

where the window will be placed. If the message is displayed as a result of a panel

verification error, the message pop-up is displayed relative to the field in error. If

the MSGLOC parameter is specified on the DISPLAY or SETMSG service, the

message pop-up is displayed relative to the specified field name. If the MSGLOC

parameter is not specified, the message pop-up will be displayed at the bottom of

the logical screen or below the active ADDPOP pop-up window, if one exists.

The width of the window will be the width from this determined location to the

right edge of the screen. Note that this width will vary based on the screen size the

user is running with.

ISPF determines if the message text is to be formatted according to English rules or

Asian rules based on the type of data in the message text, MIXED or EBCDIC,

together with the message CCSID or the current ISPF session language variable,

ZLANG.

If the data contains double-byte characters and the message CCSID is 00930, 00933,

00935, 00937, or 00939, the Japanese (Katakana), Korean, Simplified Chinese,

Traditional Chinese, or Japanese (Latin) text formatting rules are used, respectively.

If the data contains double-byte characters and the message does not have a

CCSID or the CCSID is not 00930, 00933, 00935, 00937, or 00939 and the ZLANG

value is JAPANESE, CHINESET, CHINESES, or KOREAN, the Japanese,

314 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Traditional Chinese, Simplified Chinese, or Korean text formatting rules are used,

respectively. If the data contains double-byte characters and the message does not

have a CCSID, or if the message CCSID is not 00930, 00933, 00935, 00937, or 00939,

or if the ZLANG is not JAPANESE, CHINESET, CHINESES, or KOREAN, the

Japanese text formatting rules are used by default.

If the data is all single-byte data and there is no CCSID for the message, ISPF

determines if the application is running on a Japanese Katakana terminal and if the

NOKANA keyword was specified on the message definition. If so, ISPF uses the

English formatting rules. If NOKANA was not specified, ISPF uses the Japanese

Katakana formatting rules. If the application is not running on a Katakana terminal

and there is no CCSID for the message, ISPF uses the English formatting rules.

English rules for message text formatting

Message text exceeding the width of the message window is wrapped to the next

line. The text is split at blanks only. If a word is longer than the message window

width, the window is expanded to the width of this word. However, if a word

exceeds the maximum window size (screen width minus 3), the word will be split

and continued on the next line. Once the message formatting is complete, the

message pop-up window width will be decreased to the length of the longest line,

excluding trailing blanks.

Asian rules for message text formatting

Some characters should not be placed at the beginning of a line, and some should

not be placed at the end of a line. These beginning-inhibited and ending-inhibited

characters are different among the languages, yet the required process is the same.

Thus, ISPF uses the same text formatting process for the Asian languages, but it

uses a different beginning-and-ending-inhibited character table for each language.

The CCSID of the message is used to determine which tables to use. If no CCSID is

specified, the session language ID and terminal type determine the tables used. See

Chapter 11, “Extended code page support,” on page 347.

The message text is first split into words. An SBCS “word” is delimited by blanks,

or SO/SI characters. Then any beginning inhibitors are stripped from the

beginning of the word and treated as separate words, and any ending inhibitors

are stripped from the end of the word and treated as separate words.

Adjoining DBCS alphanumeric characters (that is, Ward 42 characters) are treated

as one DBCS “word”. Then any beginning inhibitors are stripped from the

beginning of the word and treated as separate words, and any ending inhibitors

are stripped from the end of the word and treated as separate words. All other

non-Ward 42 double-byte characters are treated as separate DBCS words.

If a word is longer than the message window width, the window is expanded to

the width of this word. However, if a word exceeds the maximum window size

(screen width = 3), the word will be split and continued on the next line. If the text

consists of mixed data and does not fit in one line within the specified width, the

first position will always be reserved for an SO character (if first word is

double-byte) or for a blank (if the first word is single byte). This will allow the text

to be aligned properly.

Words that exceed the width of the message window are wrapped to the next line

according to following rules:

Chapter 9. Defining messages 315

where:

CE-1 and CE Last two words that fit on line

CB and CB+1 First two words on next line

E Ending inhibitor

B Beginning inhibitor

X Neither

Forward Move CE to next line

Backward Move CB to previous line

No process Split as is.

Note: If words CE or CB are single-byte words and are more than one character,

or if CE or CB are double-byte words and are more than one double-byte

character, no special processing is used; the line is split as is.

SBCS and DBCS blanks that end or begin a line will be deleted.

Substitutable parameters in messages

A substitutable parameter, a dialog variable name preceded by an ampersand (&),

can appear anywhere within the short and long message text. For example:

’Volume &VOL not mounted’

Substitutable parameters can also be used to specify the value of .HELP or

.ALARM, as follows:

’Volume &VOL not mounted’ .HELP = &H .ALARM = &A

where variable H must contain a panel name or single asterisk, and variable A

must contain YES or NO. Substitutable parameters can also be used to specify the

value of .TYPE and .WINDOW.

Substitutable parameters in messages are normally replaced with values

immediately before the message displays. If the message is specified for display by

using the SETMSG service, substitutable parameters are replaced during SETMSG

processing. When the GETMSG service is invoked, substitutable parameters are

replaced at the time of the GETMSG call. After substitution of the variables, the

short message is truncated to 24 characters and the long message is truncated to

512 characters.

Syntax rules for consistent message definition

These rules apply to the syntax of messages as they appear in the message library

(Figure 80 on page 308):

 ┌───────────────────────┐

 │ ... CE_1 CE │

 │CB CB+1 ... │

 └───────────────────────┘

 ┌───────┬─────┬─────┬─────┬─────────────┐

 │ CE_1 │ CE │ CB │ CB+1│ Process │

 ┤───────┼─────┼─────┼─────┼─────────────├

 │ any │ B,X │ B │ X,E │ Backward │

 │ E │ E │ X,B │ X,E │ Backward │

 │ X,B │ E │ any │ any │ Forward │

 │ X,B - X - B - B │ Forward │

 │ _____ any other ____ │ No process │

 └─────────────────────────┴─────────────┘

316 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

v The message ID must begin in column 1 of the first line, and the long message

must begin in column 1 of the second line. For readability, one or more blank

lines can separate the two-line message specifications within the member.

v Comments can precede or follow a two-line message specified within a member.

A comment begins with the characters /* starting in column one.

v In the first line, the fields must be separated by at least one blank. One or more

blanks can optionally occur on either side of an equal sign (=).

v The short message, if specified, and the long message must each be enclosed in

single quotes (’). If the short message is omitted, the enclosing single quotes are

also omitted.

v Within the short or long message text, any non-alphanumeric character can

terminate a variable name. For example:

’Enter &X, &Y, or &Z’

where a comma terminates the variable names X and Y. The name Z is delimited

by the single quote that marks the end of the message.

v A period (.) at the end of a variable name has a special meaning. It causes

concatenation with the character string following the variable. For example, if

the value of variable V is ABC, then:

’&V.DEF’ yields ’ABCDEF’

v A single ampersand followed by a blank is interpreted as a literal ampersand

character, not the beginning of a substitutable variable. An ampersand followed

by a nonblank is interpreted as the beginning of a substitutable variable.

v A double ampersand can be used to produce a character string starting with an

ampersand. The double character rule also applies to single quotes within the

delimiting single quotes required for the short and long message text, and to a

period, if it immediately follows a variable name. For example:

 && yields &

 ‘’ yields ’ within delimiting single quotes

 .. yields . immediately following a variable name.

DBCS-related variables in messages

These rules apply to substituting DBCS related variables in messages. These rules

also apply to file skeletons and file-tailoring operations.

v If the variable contains MIX format data, each DBCS subfield must be enclosed

with shift-out and shift-in characters.

Example:

eeee[DBDBDBDBDB]eee[DBDBDB]

ee... represents a field of EBCDIC characters

DBDB... represents a field of DBCS characters

-[]- represent shift-out and shift-in characters.

v If the variable contains DBCS format data only, the variable must be preceded

by the ZE system variable, without an intervening blank.

Example:

 ...text...&ZE&DBCSVAR..text...

v If the variable contains EBCDIC format data and is to be converted to the

corresponding DBCS format data before substitution, the variable must be

preceded by the ZC system variable, without an intervening blank.

Example:

 ...text...&ZC&EBCSVAR..text...

The ZC and ZE system variables can only be used for the two purposes described.

Chapter 9. Defining messages 317

318 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 10. Defining file-tailoring skeletons

ISPF skeleton definitions are stored in a skeleton library and accessed through the

ISPF file-tailoring services. You create or change skeletons by editing directly into

the skeleton library. ISPF interprets the skeletons during execution. No compilation

or preprocessing step is required.

There are two types of records that can appear in the skeleton file:

Data records

A continuous stream of intermixed text, variables, and control characters

that are processed to create an output record.

Control statements

Control the file-tailoring process. Control statements start with a right

parenthesis in column 1. Records containing a) in column 1 and a blank

in column 2 are interpreted as data records. Records containing a) in

column 1 and a nonblank character in column 2, are interpreted as control

statements.

 A)DEFAULT control statement can be used to assign different special

characters for syntactical purposes. The available control statements are:

)BLANK)CM)DEFAULT

)DO)DOT)ELSE

)ENDDO)ENDDOT)ENDREXX

)ENDSEL)IF)IM

)ITERATE)LEAVE)NOP

)REXX)SEL)SET

)SETF)TB)TBA

 You can use the ISPFTTRC command to trace both the execution of file tailoring

service calls (FTOPEN, FTINCL, FTCLOSE, and FTERASE) and the processing that

occurs within the file tailoring code and processing of each statement. For more

information, refer to “File tailoring trace command (ISPFTTRC)” on page 374.

Control characters

The characters listed are control characters and have special meanings in a

skeleton. They can appear in either a data record or a control statement.

) (right parenthesis)

Defines:

v The start of a control statement when placed in column 1 and followed

by a nonblank character in column 2.

v The start of a data record when placed in column 1 and followed by a

blank in column 2.

? (question mark)

The question mark is used as a continuation character when more than one

input record maps to a single output record or control statement.

Data records

A question mark in the last input column of a data record indicates

record continuation. If any character other than a question mark

appears in the last input column of an input data record, it is copied to

© Copyright IBM Corp. 1980, 2007 319

that column of the output record. Continuation of data records is not

permitted for variable-length input records.

Control statements

Continuation of control statements is permitted for both fixed-length

and variable-length input records.

 In a fixed-length record, continuation of a control statement is

identified by a question mark in the last input column:

)SEL &RC = 0 ?

 && &VARNAME = &ZUSER ?

 && &VARI <= 10

In a variable-length record, continuation of a control statement is

identified by a question mark in the last nonblank input column that is

preceded by a space:

)SEL &RC = 0 ?

 && &VARNAME = &ZUSER ?

 && &VARI <= 10

& (ampersand)

Indicates the start of a variable name. The value of the corresponding

dialog variable is substituted in the output record. A value of all blanks is

treated as null. These characters implicitly delimit the end of a variable

name:

 (blank) ø < (+ | & ! *) ; ¬ - / , % _ > : ’ = "

Note: File tailoring treats an ampersand-blank combination in the input

record as an invalid variable name.

. (period)

Causes the value of the variable to be concatenated with the character

string following the period when used at the end of a variable name.

 Example:

 If variable V has the value ABC, then "&V.DEF" yields "ABCDEF".

 Two consecutive control characters in the input record result in one control

character being placed in the output record:

)) yields)

 ?? yields ?

 && yields &

 .. yields . immediately following a variable name.

Note: If any of these characters is overridden by the)DEFAULT control statement,

the same rule applies to the new control character. For example, if a

)DEFAULT statement substitutes the ̂ character for), then two consecutive

 ̂ characters in the input record will result in one ̂ character being placed

in the output record.

Considerations for data records

Input records can have a maximum length of 255 bytes. For fixed-length records,

the last eight character positions are considered to be a sequence number. The

character preceding the last eight characters is considered to be the last input

column. Variable-length input records are scanned up to the end of the record.

Control characters

320 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

If variable substitution results in an output record larger than the logical record

length of the output file, file tailoring terminates and a message is displayed.

Any blank data records in the input data are deleted from file-tailoring output.

However, the)BLANK control statement can be used to produce blank lines in the

output file.

Control characters for data records

These characters have special meanings in data records:

! (exclamation point)

Serves as the default tab character for the)TB and the)TBA control

statements. The file-tailoring tabbing function works either similarly to that

of a typewriter tabbing operation, or you can specify in the)TB syntax that

tabbing is not to take place if a tab stop is sensed at the same record

position as the tab character.

< (less-than)

| (vertical bar)

> (greater-than)

Specify, respectively, the beginning, middle, and end of a conditional

substitution string. For example:

<string1|string2>

where string1 must contain at least one variable name. string2 can be null.

 If the first variable in string1 is not null, string1 is substituted in the output

record. If the first variable in string1 is null, string2 is substituted in the

output record.

 Example:

 An input skeleton contains these lines:

)SET I = &Z

)SET J = VALUE_OF_J

)SET K = VALUE_OF_K

FIRST CONDITIONAL SUBSTITUTION RESULT: <&J|&K>;

SECOND CONDITIONAL SUBSTITUTION RESULT: <&I|&J>;

After processing, the file-tailoring output file contains:

FIRST CONDITIONAL SUBSTITUTION RESULT: VALUE_OF_J

SECOND CONDITIONAL SUBSTITUTION RESULT: VALUE_OF_J

 Two consecutive control characters in the input record result in one control

character being placed in the output record:

 !! yields !

 << yields <

 || yields |

 >> yields >

Note: If any of these characters is overridden by the)DEFAULT control statement,

the same rule applies to the new control character. For example, if a

)DEFAULT statement substitutes the ̂ character for !, then two consecutive

 ̂ characters in the input record will result in one ̂ character being placed

in the output record.

Considerations for data records

Chapter 10. Defining file-tailoring skeletons 321

Considerations for control statements

The general format of a control statement is:

)control-word parameter1 parameter2 ... parameter63

where each parameter represents a name, value, operator, or keyword.

Notes about formatting control statements:

1. Control statements must begin in column 1. Note that an)IF or)ELSE control

statement can contain another control statement on the same line, as long as the

)IF or)ELSE statement begins in column 1.

2. All control words must be entered in uppercase.

3. The parameters must be separated by one or more blanks, and cannot contain

embedded blanks. A parameter can be coded as:

v A character string

v A dialog variable name, preceded by an ampersand

v A concatenation of variable names and character strings
4. The current value of each variable is substituted before the control statement is

evaluated. The rules for delimiting variable names and for using ampersands,

periods, double ampersands, and double periods are the same as for data

records, as described in “Control characters for data records” on page 321.

The)N comment statement of PDF edit models is not a valid control statement for

file tailoring and will cause file tailoring to terminate with a severe error.

Control statements

This topic describes each of the ISPF file tailoring control statements:

)BLANK [number]

The specified number of blank lines are placed in the output file at the

point where the)BLANK statement is encountered. The number parameter

can be specified as a symbolic variable. If number is omitted, the default

value is 1.

 Example:

)BLANK

)BLANK &SPACER

The first example inserts one blank line into the output file. In the second

example, the number of blank lines inserted is equal to the current value of

the variable SPACER.

)CM comment

The statement is treated as a comment. No tailoring is performed, and the

record is not placed in the output file. Comment statements cannot be

continued.

 In addition, comment control statements are ignored in these cases:

v When specified as the control statement for either the)IF or)ELSE

control statements.

v When embedded within another control statement that includes

continuation across two or more input records

Considerations for control statements

322 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

)DEFAULT abcdefg

The seven characters represented by abcdefg override the use of the), &, ?,

!, <, |, and > characters, respectively. Exactly seven characters must be

specified.

 If you are using a non-U.S. keyboard, refer to Appendix A, “Character

translations for APL, TEXT, and Katakana,” on page 361 for text keyboard

character translations.

 The)DEFAULT statement takes effect immediately when it is encountered.

It remains in effect until the end of FTINCL processing, or until another

)DEFAULT statement is encountered. If the)DEFAULT statement is used to

change defaults during an imbed, it is only in effect for that imbed level. It

does not apply to deeper or previous imbed levels. The defaults will not be

in effect for any imbedded skeletons but will be in effect for any data in

the skeleton after the)IM. The)DEFAULT statement cannot be continued.

 Example 1:

 This example demonstrates that defaults changed using)DEFAULT do not

take effect in imbedded skeletons.

 This skeleton changes the variable name control character & to the ø sign:

)DEFAULT)ø?!<|>

)SET A = USERNAME

 A: øA

)IM SKEL2

 A: øA

An FTINCL of this skeleton imbeds SKEL2, which contains:

 AA: øA

 AA: &A

This results in this data in the output data set:

 A: USERNAME

 AA: øA

 AA: USERNAME

 A: USERNAME

Example 2:

 This example demonstrates that defaults changed in an imbedded skeleton

are not passed back to the skeleton doing the)IMBED.

 An FTINCL of this skeleton imbeds SKEL3:

)SET A = USERNAME

 A: øA

)IM SKEL3

 A: øA

SKEL3 changes the variable name control character & to the ø sign:

)DEFAULT)ø?!<|>

 AA: øA

 AA: &A

This results in this data in the output data set:

 A: øA

 AA: USERNAME

 AA: &A

 A: øA

Considerations for control statements

Chapter 10. Defining file-tailoring skeletons 323

Example 3:

 This example demonstrates how to use the NT parameter to prevent

tailoring from occurring when imbedding a file. Using NT eliminates

having to change defaults in the imbedded skeleton when it contains

default control characters.

 An FTINCL of this skeleton imbeds a skeleton with the NT parameter:

)SET A = LBL1

 &A:

)IM SKEL4 NT

 GO TO &A

The imbedded skeleton SKEL4 contains:

 IF (&A < 0) | (&A > 10) THEN

 &A = 0

 ELSE

This results in this data in the output data set:

 LBL1:

 IF (&A < 0) | (&A > 10) THEN

 &A = 0

 ELSE

 GO TO LBL1

)DO

)ENDDO

The skeleton input records between the)DO and the corresponding

)ENDDO statements are repeatedly processed until a condition causes the

)DO loop to terminate. Processing then continues with the input record

immediately following the)ENDDO statement.

 The processing of a)DO loop can be prematurely ended using the)LEAVE

statement, or the current iteration of the)DO loop can terminated using

the)ITERATE statement.

 There are several different formats of the)DO statement supported by file

tailoring. The possible syntaxes are:

)DO [do-expression] [WHILE while-expression | UNTIL until-expression]

)DO FOREVER

)DO count

 Where:

 do-expression is of the form:

var = n [TO m] [BY incr] [FOR cnt]

var The control variable name.

n The starting value, which can be either a positive or a negative

integer in the range -2147483648 to 2147483647.

m The ending value, which can be either a positive or a negative

integer in the range -2147483648 to 2147483647.

incr The increment value, which can be either a positive or a negative

integer in the range -2147483648 to 2147483647. Default value is 1.

cnt The maximum number of iterations of the)DO loop to be

Considerations for control statements

324 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

performed. The number can be either a positive or a negative

integer in the range -2147483648 to 2147483647. If cnt is less than 1,

the)DO statement is skipped.

until-expression is a relational expression that is evaluated for a true or false

condition. The)DO loop continues while the until-expression evaluates to a

false condition. The test is performed at the end of each loop prior to

updating the control variable. The loop is always performed at least once.

 while-expression is a relational expression that is evaluated for a true or false

condition. The)DO loop continues while the while-expression evaluates to a

true condition. The test is performed at the start of each loop, once the

control variables are initialized.

 count is an integer number used to control the number of iterations of the

)DO loop. The number can be either a positive or a negative integer in the

range -2147483648 to 2147483647. If the count is less than 1, the)DO

statement is skipped. The default value for count is 1.

 FOREVER continues processing the)DO loop until a)LEAVE statement

within the loop terminates the)DO loop. All other parameters are ignored

when using the FOREVER parameter. File tailoring makes no attempt to

determine if a)DO FOREVER loop can be suitably terminated.

 Example 1

 This example performs a loop 10 times with the control variable, I, starting

at 1 and increasing by 1 each time. The control variable will have the value

11 at the end of the loop.

)DO I = 1 TO 10

. . .

)ENDDO

Example 2

 This example shows a)DO loop that is to continue until the variable RC is

nonzero.

)SET RC = 0

)DO FOREVER

. . .

)IF &RC ¬= 0 THEN)LEAVE

. . .

)ENDDO

Example 3

 This is another example of a)DO loop that is to continue until the variable

RC is nonzero. Note that testing of the variable RC is performed at the

start of each loop.

)SET RC = 0

)DO WHILE &RC = 0

. . .

)ENDDO

Example 4

 This example performs a loop 10 times. There is no control variable.

Considerations for control statements

Chapter 10. Defining file-tailoring skeletons 325

)DO 10

. . .

)ENDDO

)DOT table-name [SCAN [(name-cond-pairs)]]

)ENDDOT

Note: The)DOT command parameter table-name must be in uppercase for

use with ISPF table services.

The skeleton input records between the)DOT and the corresponding

)ENDDOT are iteratively processed as follows:

v Where the SCAN keyword is not provided, each row of the table is

processed, beginning with the first row.

v Where the SCAN keyword is provided, only those rows of the table that

match the current scan arguments are processed.

– Where the additional name-cond-pairs parameter is not specified, a

search argument must have already been established for the ISPF

table, table-name. This requires table-name to have been opened and a

valid search argument established using the TBSARG service before

the file tailoring services are invoked. A severe dialog error will occur

if the SCAN keyword is specified and valid search arguments have

not yet been established for the table.

– Where the additional name-cond-pairs parameter is specified, ISPF file

tailoring services will establish the search arguments using the

TBSARG service prior to processing table. The dialog variable must

already be initialized to the required values for the TBSARG service.

At the start of each iteration, the contents of the current table row are

stored into the corresponding dialog variables. Those values can then be

used as parameters in control statements or substituted into data records.

Up to four levels of)DOT nesting are permitted. The same table cannot be

processed recursively. The list of records must end with the)ENDDOT

statement.

 If the table was already open, it remains open after file tailoring with the

CRP positioned at TOP. If it was not open, it is opened automatically and

then closed upon completion of file tailoring.

 Any of the other control statements can be used between the)DOT and the

)ENDDOT control statements.

 Example 1

 This example takes the information from table ABC, and writes any blank

table row as a blank line:

)DOT ABC

)SEL &LNAME = &Z && &FNAME = &Z

)BLANK 1

)ENDSEL

 &FNAME &LNAME

)ENDDOT

Example 2

 This example takes the information from table ABC, and writes out the

records containing the value in the dialog variable &VAR2, where the table

variable VAR1 matches the current value in the dialog variable &VAR1:

Considerations for control statements

326 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

)DOT ABC SCAN(VAR1,EQ)

&VAR2

)ENDDOT

)IF relational-expression THEN [control-statement]

)ELSE [control-statement]

The relational-expression is evaluated for a true or false condition.

v If the condition is true, then either the control-statement on the)IF control

statement is processed or the next non-comment line is processed. The

)ELSE statement, if one is present, is skipped.

v If the condition is false, the control-statement or next non-comment line is

skipped and the subsequent)ELSE statement, if one is present, is

processed.

Up to 32 levels of)IF and)SEL nesting are permitted.

The control-statement can be any ISPF file tailoring control statement, except

)CM (comment), which is ignored. Some control statements, namely)DO,

)SEL, and)DOT require more than one input record. Similarly, the)IM

control statement imbeds another ISPF skeleton member. The processing of

the)IF or)ELSE statement is not completed until the control statement

specified on the)IF or)ELSE statement is also completed.

 Only a control statement can be included on the same input record after

the THEN parameter or)ELSE control word. Put data records that are to

be processed as part of the)IF or)ELSE on the next input record. The

control-statement is optional on the same line as either the)IF or)ELSE

control words, but a valid statement must be supplied for an)IF and)ELSE

control statement before the end of the skeleton member. A severe error

will occur if the control statement is missing after the THEN parameter or

)ELSE control word. Use the)NOP control statement to provide a null

statement.

 Example 1

 This example combines the)IF and)DO statements to process a block of

input records when the variable RC has a value of zero, or another block

of input records when its value is nonzero.

)IF &RC = 0 THEN)DO

. . .

)ENDDO

)ELSE)DO

. . .

)ENDDO

Example 2

 This example sets the dialog variable RC back to zero when it has a value

of 4. Note that the comment statement is ignored.

)IF &RC = 4 THEN

)CM RESET RETURN CODE TO ZERO

)SET RC = 0

)IM skel-name [NT] [OPT] [EXT|NOEXT]

 The specified skeleton is imbedded at the point where the)IM statement is

encountered. Up to 15 levels of imbedding are permitted.

 The optional NT parameter indicates that no tailoring is to be performed

on the imbedded skeleton. Because the NT parameter causes the data to be

Considerations for control statements

Chapter 10. Defining file-tailoring skeletons 327

imbedded as it is, without any processing of control characters or control

statements, using the NT option improves performance.

 The optional OPT parameter indicates that the skeleton is not required to

be present in the skeleton library. If OPT is coded and the skeleton is not

present, no error indication is given, and the record is ignored. If OPT is

not coded, and the skeleton is not present, a severe error occurs.

 The EXT parameter enables the use of the extended built-in functions

within the skeleton skel-name. The NOEXT parameter disables the use of

the extended built-in functions. Both parameters are optional. When

neither the EXT or NOEXT parameter is specified, the ability to use the

built-in functions is determined by the FTINCL service call:

 FTINCL service

Not specified EXT

)IM control

statement

Not specified on

primary skeleton

No Yes

EXT Yes Yes

NOEXT No No

)ITERATE

The)ITERATE statement terminates the current iteration of the)DO

structure and repeats the loop, providing any conditions that would cause

the loop to terminate have not yet been reached. A severe dialog error will

occur if the)ITERATE statement is used outside a)DO structure.

)LEAVE [DOT]

The)LEAVE statement immediately terminates the innermost)DO

statement. A severe dialog error will occur if the)LEAVE statement is used

outside a)DO structure.

 The optional DOT parameter permits the termination of the current table

via the)DOT ...)ENDDOT control statements. The)LEAVE DOT statement

must be found within an active)DOT ...)ENDDOT sequence.

)NOP The)NOP control statement does not generate any output and can be used

anywhere in a skeleton input file. It can be used as a null control-statement

for either the)IF or)ELSE control statements.

)REXX [variable1 variable2 ... variablen] [REXX=[%]rexxname]

)ENDREXX

The)REXX control statement is used to invoke REXX code from within a

file tailoring skeleton. The REXX can be coded within the skeleton

immediately after the)REXX control statement, or the name of a member

containing a REXX exec can be supplied.

 variable1 ... variablen are optional parameters that specify the names of

dialog variables to be passed to the REXX code for processing. Each

variable can itself be a variable name, whose value is a list of one or more

dialog variables, separated by either a space or a comma, that are to be

passed to the REXX code.

 rexxname specifies the name of a member in the standard search sequence

used to load REXX programs. This member can contain interpreted REXX

or compiled REXX. Compiled REXX can be either the output generated by

the REXX compiler when using the CEXEC option, or a load module

generated by link-editing the output generated by the REXX compiler

when using the OBJECT option. This is an optional parameter.

Considerations for control statements

328 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

If a percent sign (%) is specified before rexxname, it will bypass the attempt

to load the REXX as a load module and attempt to load it directly from the

standard SYSEXEC/SYSPROC allocations.

Notes:

1. The REXX code cannot access any other dialog variables except those

specified on the)REXX control statement.

2. The REXX code cannot issue requests for ISPF services.

3. REXX coded within the skeleton must be terminated by a)ENDREXX

control statement within the same skeleton member.

Processing ISPF Dialog Variables with File Tailoring REXX

 ISPF dialog variables can be processed by file tailoring REXX code. Dialog

variables are made available to the REXX code via the parameters specified

on the)REXX control statement:

 These rules apply to the dialog variables that are passed to file tailoring

REXX code:

v The variable values must be in character format when passed, and must

remain in character format.

v File tailoring REXX can change the value of a variable but it cannot

change its length.

ISPFTRXV: Dialog Variable Processor for File Tailoring REXX

 The ISPF module ISPFTRXV is used to make ISPF dialog variables

available to the file tailoring REXX code, and to update the dialog variables

after they have been processed by file tailoring REXX.

 When the file tailoring REXX is interpreted REXX (that is, the REXX

statements are coded directly in a skeleton or the member specified on

)REXX control statement contains interpreted REXX), ISPF creates calls to

ISPFTRXV to perform these tasks:

1. Set up corresponding REXX variables for the ISPF dialog variables

before the file tailoring REXX is invoked.

2. Update the ISPF dialog variables with any changes made by the file

tailoring REXX after it has finished.

To do this, ISPF generates these REXX statements before and after the

supplied file tailoring REXX code:

Considerations for control statements

Chapter 10. Defining file-tailoring skeletons 329

(Bold text indicates REXX code generated by ISPF.)

Notes:

1. A “trace i” statement is also inserted into the REXX code generated by

ISPF when the file tailoring trace command (ISPFTTRC) is used with

the debug option.

2. The 11 or 12 lines of REXX code generated by ISPF before the supplied

file tailoring REXX code and the line of REXX code generated by ISPF

after the supplied file tailoring REXX code will affect the results

obtained from the SOURCELINE function. For example using

SOURCELINE() in interpreted file tailoring REXX code returns a value

that is 12 or 13 more than the number of source lines of file tailoring

REXX.

Interpreted File Tailoring REXX and the EXIT statement

 If the interpreted file tailoring REXX code uses the EXIT statement to

terminate REXX processing, the termination call to ISPFTRXV generated by

ISPF will not be executed. This means that any changes made to REXX

variables will not be applied to the corresponding ISPF dialog variables. If

you need to use the EXIT statement in your file tailoring REXX code and

you want changes to be applied to the ISPF dialog variables, ensure that a

termination call to ISPFTRXV (that is, Call ISPFTRXV ’T’) is executed

before the EXIT statement.

 When the file tailoring REXX code is compiled REXX, ISPF does not create

these initialization and termination calls to ISPFTRXV. Therefore, file

tailoring developers must include these calls in their file tailoring REXX

code.

 Return Codes and Error Processing

 ISPF provides these system dialog variables for processing errors and

return codes in file tailoring REXX:

ZFTXRC Available for file tailoring REXX code to pass a return code

back to ISPF. Length is 2 bytes. The corresponding REXX

variable is initialized with a value of 0.

ZFTXMSG Available for file tailoring REXX to return a message ID to

 Call ISPFTRXV ’I’

 If rc=0 then do

 say ’ISPFTRXV Init failed rc=’rc

 return

 end

 Call ft_0003B060

 Call ISPFTRXV ’T’

 If rc=0 then

 say ’ISPFTRXV Term failed rc=’rc

 return

 ft_0003B060:

 ...
 file tailoring REXX code

 ...
 return

Considerations for control statements

330 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

file tailoring and the invoking application. Length is 8

bytes. The corresponding REXX variable is initialized with

a value of 8 blanks.

ISPF recognizes these return codes passed back by the file tailoring REXX

code in the dialog variable ZFTXRC:

0 Successful operation.

8 File tailoring REXX defined failure. File tailoring continues.

other Severe error in the file tailoring REXX. File tailoring terminates.

When control returns to ISPF after the file tailoring REXX code has

executed, if ZFTXRC contains a return code of 8 and the value in

ZFTXMSG is blank, then ZFTXMSG is set to ISPF222.

 If the return code in ZFTXRC is other than 0 or 8, the FTINCL service

terminates with a severe error condition. ISPF sets the ZERRMSG system

variable using this search order:

1. If the value in ZFTXMSG is not blank when control returns to ISPF, it is

used to set the ZERRMSG system variable. This allows the file tailoring

REXX code to define the message to be used if a severe error occurs.

2. If the value in ZFTXMSG is blank when control returns to ISPF,

ZFTXMSG and ZERRMSG are set to ISPF223. This is the default ISPF

message for severe errors relating to file tailoring REXX.

If CONTROL ERRORS CANCEL is in effect, ISPF displays on the severe

error panel the message indicated by the value of ZERRMSG.

)SEL relational-expression

)ENDSEL

The relational expression is evaluated for a true or false condition.

v If the condition is true, the skeleton input records between the)SEL and

the corresponding)ENDSEL are processed.

v If the condition is false, these records are skipped.

Up to 32 levels of)SEL and)IF nesting are permitted. The list of records

must end with an)ENDSEL statement.

 Any of the other control statements can be used between the)SEL and the

)ENDSEL control statements. For example, if you want to write

information from a table only if variable ABC is set to the name of that

table, specify:

)SEL &ABC=’TABNAME’

)DOT TABNAME

 &FNAME &LNAME

)ENDDOT

)ENDSEL

The relational expression consists of a simple comparison of the form:

value1 operator value2

or a combination of up to eight simple comparisons joined by connectors.

The system variable Z can be used to represent a null or blank value.

 The allowable operators are:

EQ or = LE or <=

NE or ¬= GE or >=

GT or > NG or ¬>

LT or < NL or ¬<

Considerations for control statements

Chapter 10. Defining file-tailoring skeletons 331

The allowable connectors are | (OR) and && (AND). ISPF evaluates

connected expressions from left to right and evaluates the connectors with

equal priority.

 Examples:

)SEL &COND = YES

)SEL &TEST1 ¬= &Z | &ABC = 5

)SEL &TEST1 ¬= &Z && &ABC = 5

)SET variable = expression

)SET allows a value to be assigned to a dialog variable. The variable name

should not be preceded by an ampersand, unless the variable name is itself

stored as a variable. A blank is required between the variable and the

equal sign and between the equal sign and the expression.

 The expression can be specified in either of these ways:

 value1

 value1 operator value2 operator ... value31

where operator can be a plus sign (+) or a minus sign (-).

 To assign a null value to a dialog variable, use the system variable &Z.

 Example:

 An input skeleton file contains:

)SET A = 1

)SET B = 2

)SET C = &A + &B

)SET D = &Z

A is &A, B is &B, C is &C, D is &D

The resulting output file contains:

A is 1, B is 2, C is 3, D is

)SETF variable = expression

The)SETF control statement is the same as the)SET control statement,

except that it does not require the use of the EXT parameter on either the

FTINCL service or)IM control statement that is processing the skeleton to

use any of the built-in functions. In other words, the extended built-in

functions can always be used on the)SETF control statement.

 The expression can be specified in either of these ways:

 value1

 value1 operator value2 operator ... value31

where operator can be a plus sign (+) or a minus sign (-). Each value of

the expression can be a built-in function or a value.

 If you need more arithmetic capabilities, use the &EVAL() built-in function

or use the)REXX control statement to invoke a REXX exec.

 Examples:

Considerations for control statements

332 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

)SETF TOTAL = &EVAL(&SUB1 * (&N-1)) + 2

)SETF NAME = &STR($FNAME &SNAME)

)TB The)TB control statement has 3 forms:

)TB value1 ... value16 (standard tabbing)

)TB value1[A] ... value16[A] (alternate tabbing: designated positions)

)TBA value1 ... value16 (alternate tabbing: all positions)

An exclamation point (!) is used as the default tab character for the)TB

control statement. It tabs the output record to the next tab stop and fills the

intervening spaces with blanks. The next character following an

exclamation point in the input record is put at the tab stop location in the

output record. Up to 16 tab stops can be specified. A tab stop specifies a

tab position in the output record, and must be in the range 1-255. The

default is one tab stop at location 255.

When you use the standard tabbing syntax,)TB value1 ... value16, and

the tab stop value equals the current output position, the tabbing skips to

the next tab stop value that is greater than the current output position. The

input character following the tab character is then inserted into the

position skipped to in the output record.

 When you use alternate tabbing syntax, specified with an ’A’ in the)TB

tabbing syntax, and the tab stop value equals the current output position,

the input character following the tab character is inserted into the current

position in the output record. This allows you to write to the current

position of the output record if a tab character in the input record is

encountered at the same time as a tab stop is encountered in the output

record.

 The way you specify alternate tabbing syntax on the)TB control statement

determines whether only designated or all tab stop values are affected,

even if the tab stop value equals the current position in the output record

when a tab character is encountered in the input record. If you specify:

)TB value1A ... value16A

only the tab stop values to which the character A is appended selectively

cause tabbing to stop in any of those positions. If you specify:

)TBA value1 ... value16

any tab stop value that equals the current position in the output record

when a tab character is encountered in the input record causes tabbing to

stop.

 Be sure the character that you append for alternate tabbing is an uppercase

A. Appending an A to the)TB control word (that is,)TBA) has the same

effect as appending an A to all individual tab stop values. When you use

the)TBA control word, appending an A to an individual tab stop value has

no additional effect.

 Example 1:

 This example uses the standard tabbing syntax:

)TB value1 ... value16

An input skeleton file contains:

Considerations for control statements

Chapter 10. Defining file-tailoring skeletons 333

)TB 5 10 20

 !ABCDE!F

After processing, the file-tailoring output record contains these characters:

v Positions 1-4 contain the blanks inserted by the first tab operation.

v Positions 5-9 contain ABCDE. Standard tabbing occurs between E and F

because tab stop 10 is at the same (not greater than) position of the

output record at which the tab character is encountered in the input

record.

v Positions 10-19 contain blanks inserted by the second tab operation.

v Position 20 contains F.

Example 2:

 This example uses alternate tabbing syntax for designated tab positions:

)TB value1[A] ... value16[A]

An input skeleton file contains:

)TB 5 10A 20

 !ABCDE!F

After processing, the file-tailoring output record contains these characters:

v Positions 1-4 contain the blanks inserted by the first tab operation.

v Positions 5-10 contain ABCDEF. F immediately follows E because

alternate tabbing is specified for tab position 10. This allows tabbing to

stop in the current output record position (10) when the tab character

was encountered in the input record.

Example 3:

 This example uses the alternate tabbing syntax for all tab positions:

)TBA value1 ... value16

An input skeleton file contains:

)TBA 3 6 10

 !ABC!DEF!GH

After processing, the file-tailoring output record contains:

v Positions 1-2 contain the blanks inserted by the first tab operation.

v Positions 3-5 contain ABC. D immediately follows C because alternate

tabbing is specified and a tab stop is set at the current output

position (6).

v Positions 6-8 contain DEF.

v Position 9 contains a blank inserted by normal tabbing.

v Positions 10-11 contain GH.

Built-in functions

ISPF skeletons support the built-in functions listed. These can be used in place of

any single parameter on a control statement, except the)DEFAULT control

statement or the control statement keyword itself. They cannot be used on data

records.

A built-in function name is defined as a variable name, including the ampersand

and immediately followed by an open bracket “(”. Built-in functions can be nested

up to 32 levels.

Considerations for control statements

334 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

The built-in functions are:

v &EVAL()

v &LEFT()

v &LENGTH()

v &RIGHT()

v &STR()

v &STRIP()

v &SUBSTR()

v &VSYM()

v &SYMDEF()

Built-in functions

Chapter 10. Defining file-tailoring skeletons 335

|

&EVAL()

 The &EVAL() function evaluates an arithmetic expression. Only integer calculations

are supported.

Syntax:

&EVAL(expression)

expression

An arithmetic expression that is to be evaluated. Only integers with values

in the range (-2147483647 to +2147483646) are supported. All intermediate

results are also truncated to an integer. The expression can include these

operators:

+ addition

- subtraction

* multiplication

/ division

** raised to the power of

// remainder

The expression can include up to 32 levels of nested parentheses.

Examples:

&EVAL(&SUB1 * (&N-1))

&EVAL(&YEAR//4)

Built-in functions

336 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

&LEFT()

 The &LEFT() function returns a string of characters starting at the left of the

specified string. Where the string is shorter than the required length, the resulting

string is padded at the right with a pad character.

Syntax:

&LEFT([string], length [, pad])

string The string from which the leftmost characters are to be obtained. This can

be a null parameter.

length The length of the resulting string. It must be a positive integer or zero. The

length parameter can be an expression and will be automatically evaluated

using the &EVAL() function. This parameter is required.

pad A single character used to extend the resulting string to the required length

when the length of string is less than length. The default pad character is a

blank. This parameter is optional.

Examples:

&LEFT(,80,+)

&LEFT(&NAME,1)

Built-in functions

Chapter 10. Defining file-tailoring skeletons 337

&LENGTH()

 The &LENGTH() function returns the length of a string.

Syntax:

&LENGTH([string])

string The string used to obtain the required length. This can be a null parameter.

Examples:

&LENGTH(&NAME)

Built-in functions

338 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

&RIGHT()

 The &RIGHT() function returns a string of characters starting at the right of the

specified string. Where the string is shorter than the required length, the resulting

string is padded at the left with a pad character.

Syntax:

&RIGHT([string], length [, pad])

string The string from which the rightmost characters are to be obtained. This can

be a null parameter.

length The length of the resulting string. It must be a positive integer, or zero. The

length parameter can be an expression and will be automatically evaluated

using the &EVAL() function. This parameter is required.

pad A single character used to extend the resulting string, at the left, to the

required length when the length of string is less than length. The default

pad character is a blank. This parameter is optional.

Examples:

&RIGHT(25,6,0)

&RIGHT(&DSN,1)

Built-in functions

Chapter 10. Defining file-tailoring skeletons 339

&STR()

 The &STR() function returns a string. The resulting string can include embedded

blanks.

Syntax:

&STR([string])

string The string of characters to be returned. This can be a null parameter.

Examples:

&STR(&FNAME &SNAME)

Built-in functions

340 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

&STRIP()

 The &STRIP() function removes leading and trailing characters that match a

supplied character.

Syntax:

&STRIP([string], option [, char])

string The string of characters to be processed. This can be a null parameter.

option This parameter is required. It must contain one of these values:

L remove leading characters only

T remove trailing characters only

B remove both leading and trailing characters

char A single character that is the character to be removed from the string. The

default character is a blank. This parameter is optional.

Examples:

&STRIP(&NUM,L,0)

Built-in functions

Chapter 10. Defining file-tailoring skeletons 341

&SUBSTR()

 The &SUBSTR() function obtains a substring of another string, starting at a

specified position and obtaining either the remainder of the string a specified

number of characters.

Syntax:

&SUBSTR([string], position [, length] [, pad])

string The string of characters to be processed. This can be a null parameter.

position

The starting position within the string from which to obtain the resulting

value. It must be a positive integer. The position parameter can be an

expression and will be automatically evaluated using the &EVAL()

function. This parameter is required.

length The length of the resulting string. It must be a positive integer or zero. The

length parameter can be an expression and will be automatically evaluated

using the &EVAL() function. The default length is to return the remainder

of the string. This parameter is optional.

pad A single character used to extend the resulting string to the required length

when the remaining length of string is less than length. The default pad

character is a blank. This parameter is optional.

Examples:

&SUBSTR(&DATE,5,2)

Built-in functions

342 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

&VSYM()

 The &VSYM() function processes the value of a dialog variable found in the

function pool and resolves the values of any system symbols. This includes all

system static symbols and dynamic symbols and any user defined static symbols.

z/OS MVS Initialization and Tuning Reference has details on system static and

dynamic symbols. Consult your system programmer for any locally defined user

symbols as these are system and installation dependent.

Syntax:

&VSYM(varname)

varname

The name of a dialog variable whose value in the function pool is

processed to resolve the values for system symbols.

Examples:

&VSYM(DSNL)

Built-in functions

Chapter 10. Defining file-tailoring skeletons 343

|

|
|
|
|
|
|

|

|

|
|
|

|

|

|

&SYMDEF()

 The &SYMDEF() function obtains the value for the corresponding system symbolic

symbol. This includes all system static symbols and dynamic symbols and any user

defined static symbols. z/OS MVS Initialization and Tuning Reference has details on

system static and dynamic symbols. Consult your system programmer for any

locally defined user symbols as these are system and installation dependent.

Syntax:

&SYMDEF(symname)

symname

The name of the system or user symbol that is to be obtained. If the

symbol name is not found file tailoring processing returns a null value and

processing continues. This parameter is required.

Examples:

&SYMDEF(SYSCLONE)

&SYMDEF(LHHMMSS)

Built-in functions

344 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Sample skeleton file

Figure 82 shows a sample skeleton file. The sample skeleton refers to several dialog

variables (for example, ASMPARMS, ASMIN, and MEMBER). It also illustrates use

of the select statements)SEL and)ENDSEL to conditionally include records. The first

part of the example has nested selects to include concatenated macro libraries if

the library names have been specified by the user, that is, if variables ASMMAC1

and ASMMAC2 are not equal to the null variable Z.

In the second part of the example,)IF ...)ELSE statements are used to

conditionally run a load-and-go step. An imbed statement,)IM, is used to bring in

a separate skeleton for the load-and-go step.

DBCS-related variables in file skeletons

These rules apply to substituting DBCS-related variables in file skeletons (they also

apply to messages and file-tailoring operations):

v If the variable contains MIX format data, each DBCS subfield must be enclosed

with shift-out and shift-in characters.

Example:

eeee[DBDBDBDBDB]eee[DBDBDB]

ee... represents a field of EBCDIC characters

DBDB... represents a field of DBCS characters

-[]- represent shift-out and shift-in characters.

v If the variable contains DBCS format data only, the variable must be preceded

by the ZE system variable, without an intervening blank.

Example:

 ...text...&ZE&DBCSVAR..text...

v If the variable contains EBCDIC format data and is to be converted to the

corresponding DBCS format data before substitution, the variable must be

preceded by the ZC system variable, without an intervening blank.

//ASM EXEC PGM=IFOX00,REGION=128K

// PARM=(&ASMPARMS)

//SYSIN DD DSN=&ASMIN(&MEMBER),DISP=SHR

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

)SEL &ASMMAC1 ¬= &Z

// DD DSN=&ASMMAC1,DISP=SHR

)SEL &ASMMAC2 ¬= &Z

// DD DSN=&ASMMAC2,DISP=SHR

)ENDSEL

)ENDSEL

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,2))

//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(2,1))

//SYSPRINT DD SYSOUT=(&ASMPRT)

)CM IF USER SPECIFIED "GO," WRITE OUTPUT IN TEMP DATA SET

)CM THEN IMBED "LINK AND GO" SKELETON

)IF &GOSTEP = YES THEN)DO

//SYSGO DD DSN=&&&&OBJSET,UNIT=SYSDA,SPACE=(CYL,(2,1)),

// DISP=(MOD,PASS)

)IM LINKGO

)ENDDO

)CM ELSE (NOGO), WRITE OUTPUT TO USER DATA SET

)ELSE)DO

//SYSGO DD DSN=&ASMOUT(&MEMBER),DISP=OLD

)ENDDO

//*

Figure 82. Sample skeleton file

Sample skeleton file

Chapter 10. Defining file-tailoring skeletons 345

Example:

 ...text...&ZC&EBCSVAR..text...

The ZC and ZE system variables can be used only for the two purposes described.

For file skeleton definition and file tailoring, these two variables can be used only

between)DOT and)ENDDOT statements. When variable substitution causes a

subfield-length of zero, the adjacent shift-out and shift-in characters are removed.

DBCS-related variables

346 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Chapter 11. Extended code page support

EXTENDED CODE PAGE support allows panels, messages, and variable

application data to be displayed correctly on terminals using any of the supported

code pages. For example, a German panel can be displayed on a French Country

Extended Code Page (CECP) terminal, with all common characters displayed

correctly. Any characters in the panel that do not exist in the terminal code page

are displayed as periods (.).

ISPF supports the EXTENDED CODE PAGES listed in “Supported CCSIDs” on

page 351. CCSID stands for Coded Character Set IDentifier. The CCSID is a short

identifier, representing a code page and character set combination. An extended

CCSID has the same code page as its base CCSID, but has a larger character set.

Translating common characters

ISPF translates common characters from EXTENDED CODE PAGES to the code

page of the terminal for panel)BODY,)MODEL, and)AREA text, if the panel is

tagged with a CCSID, and for the long and short message text if the message

member is tagged with a CCSID.

The TRANS service is provided to allow the application to translate variable

application data from one CCSID to another CCSID (see z/OS ISPF Services Guide).

In a panel tagged with a CCSID, all characters that are not)BODY,)MODEL, and

)AREA text and all characters in variable names within the)BODY,)MODEL, and

)AREA text of a tagged panel and within the message text of a tagged message

member must be in the syntactic character set:

v A-Z

v a-z

v 0-9

v + < = > % & * ″ ’

v () , _ - . / : ; ?

Note: Lowercase a-z can be used for any CCSID supported by ISPF except the

Japanese (Katakana) Extended CCSID 930.

If an EXTENDED CODE PAGE is specified and the terminal code page and

character set is one of those recognized by ISPF, all displayable code points are

available for display (no displayable code points are invalidated by ISPF).

If an EXTENDED CODE PAGE is not indicated in a panel or message member, a

base character set and code page is assumed based on the terminal type specified

in option 0 (see z/OS ISPF User’s Guide Vol II).

Z variables

These Z variables are available for code page processing:

ZTERMCP Terminal code page. Returned as a 4-digit decimal number (4

characters).

ZTERMCS Terminal character set. Returned as a 4-digit decimal number (4

characters).

© Copyright IBM Corp. 1980, 2007 347

ZTERMCID Terminal CCSID. Returned as a 5-digit decimal number (5

characters).

ZERRCSID Contains the 5-digit decimal CCSID of a dialog error message, or

blanks if the error message is not tagged with a CCSID. Returned

as a 5-digit decimal number (5 characters).

If an extended code page is specified for a panel or message and the terminal code

page cannot be determined, there is no transformation of characters.

Table 22 illustrates when characters will be transformed for Extended Code Page

support and when they will not be transformed:

 Table 22. Character transformation table

 Terminal Query

Reply CP/CS

Valid for ISPF

Terminal Query

Reply CP/CS

Not Returned

Terminal Query

Reply CP/CS

Invalid for ISPF

CCSID Tag Present Characters

transformed

Characters not

transformed

Characters not

transformed

No CCSID Tag Present Characters not

transformed

Characters not

transformed

Characters not

transformed

For DBCS languages, the beginning and ending inhibited character tables are

enhanced to include characters from the extended code pages for the text

formatting of messages and panels.

Panels tagged with CCSID

Panels can be defined with a)CCSID section and the NUMBER(xxxxx) keyword

where xxxxx is the CCSID of the extended code page as defined by Character Data

Representation Architecture. The)CCSID section must be the first section in the

panel. See “Defining the CCSID section” on page 214.

Messages tagged with CCSID

An ISPF message can be defined with .CCSID=xxxxx. See “Messages tagged with

CCSID” on page 313.

GETMSG service

The GETMSG service can be called with a CCSID parameter. If the message is

tagged with a CCSID, the CCSID will be returned; otherwise, blanks will be

returned.

TRANS service

Users can call the TRANS Service in ISPF to translate variable data specified by the

user from one CCSID to another CCSID. The to and from CCSIDs are also specified

by the user in the TRANS call (see z/OS ISPF Services Guide). For a list of the

EXTENDED CODE PAGE translate tables provided by ISPF, see “Extended code

page translate tables provided by ISPF” on page 356.

ISPccsid translate load modules

The ISPccsid translate load modules provide ISPF with the information needed to

translate data from one CCSID to another. There is one ISPccsid translate load

module for each of the supported CCSIDs. The name (or alias for those ISPccsid

348 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

modules provided by ISPF) of each CCSID translate load module is made up of

the 5-digit CCSID, prefixed with ISP. For example, load module ISP00111 supports

translation of the CCSID 00111. Each CCSID translate load module must contain

two translate tables. The required translate tables permit data to be translated

between the respective CCSID and CCSID 00500. Additionally, each CCSID load

module can contain up to 256 pairs of optional direct translate tables. ISPF will use

direct translate tables when available. Otherwise, ISPF translates through CCSID

00500. Translating through CCSID 00500 can result in valid characters being lost.

This is due to CCSID 00500 not having all possible code points defined.

ISPccsid translate load module generation macro

An assembler macro that permits the user to generate customized ISPccsid

translate load modules is supplied with ISPF. The macro also allows the user to

add direct translate tables to the ISPccsid translate load modules ISPF supplies

with the product.

Only the values for the hex digits X’40’ through X’FE’ are defined in a given

translate table. These are the only code points that vary from CCSID to CCSID.

The assembler macro is:

ISPCCSID CCSID=nnnnn,TO=to-address,FROM=from-address

ISPCCSID macro

The initial ISPCCSID macro usage identifies the CCSID associated with the

particular ISPccsid translate load module and provides addresses of the to and from

CCSID 00500 translate tables.

Subsequent usage of the ISPCCSID macro in a particular ISPccsid translate load

module generation identifies the CCSID and translate table addresses of optional

direct to and from translate tables.

Description of parameters

nnnnn

Required parameter. The nnnnn value is a 5-digit decimal (5 characters)

number that specifies a CCSID number. The nnnnn value on the first or only

ISPCCSID macro definition is the CCSID associated with the ISPccsid translate

load module. The nnnnn value on other than the first ISPCCSID macro

definition is the CCSID associated with direct to and from translate tables.

Assembly errors will occur if this parameter is not 5 digits.

to-address

Required parameter. On the first or only ISPCCSID macro definition, this

parameter specifies the address of the translate table that converts data from

the CCSID associated with the respective ISPccsid translate load module to

CCSID 00500. On subsequent ISPCCSID macro definitions within the same

ISPccsid translate load module, it specifies the address of the translate table

that converts data from the CCSID associated with the respective ISPccsid

translate load module to the CCSID specified on this ISPCCSID macro

definition.

from-address

Required parameter. On the first or only ISPCCSID macro definition, this

parameter specifies the address of the translate table that converts data from

CCSID 00500 to the CCSID associated with the respective ISPccsid translate

load module. On subsequent ISPCCSID macro definitions within the same

Chapter 11. Extended code page support 349

ISPccsid translate load module, it specifies the address of the translate table

that converts data from the CCSID specified on this ISPCCSID macro definition

to the CCSID associate with the respective ISPccsid translate load module.

ISPccsid translate load module definition examples

Each ISPccsid translate load module must be compiled separately using Assembler

H (or functional equivalent). Figure 83 shows an example of a basic translate

model, and Figure 84 shows an example of a translate model with two direct

CCSID entries.

KANA and NOKANA keywords

If a CCSID is specified, the KANA (panels and messages) and NOKANA

(messages) keywords are ignored by ISPF. Panels and messages that specify the

Japanese (Katakana) Extended CCSID (CCSID=00930) are handled as follows

regardless of whether KANA or NOKANA (for messages) keywords are specified:

v If the terminal code page is the base Katakana code page, all characters in the

panel)BODY,)MODEL, or)AREA text or short and long message text, except

lowercase English characters, are left as is. Because the base Katakana code page

does not support lowercase English characters, all lowercase English characters

are translated to uppercase English characters. All other parts of the panel or

message must be in the syntactic character set, excluding characters a-z.

v If the terminal code page is non-Katakana, all lowercase English characters in

the)BODY,)MODEL, or)AREA text or short and long message text in a panel

or message that has been tagged with the extended Katakana code page

(CCSID=05026) are translated to the equivalent lowercase English characters in

the terminal code page for display. All Katakana characters are displayed as

periods (.). For example, the lowercase a, which is X’62’ in the extended

Katakana code page, is translated to X’81’ (lowercase a) in the U.S. English code

page. The Katakana character which is X’81’ is translated to a period (X’4B’) in

the U.S. English code page. All other parts of the panel or message must be in

the syntactic character set, excluding characters a-z.

Character translation

Table 23 on page 351 illustrates the character translation from the extended

Katakana code page and from the extended Japanese (Latin) code page (if

 ISPCCSID CCSID=00111,TO=TRTO500,FROM=TRFR500

*

*

TRTO500 DC XL191’... 00111 TO 00500

TRFR500 DC XL191’... 00111 FROM 00500 (00500 TO 00111)

 END

Figure 83. Basic ISP00111 translate module

 ISPCCSID CCSID=00222,TO=TRTO500,FROM=TRFR500

 ISPCCSID CCSID=00333,TO=TRT00333,FROM=TRF00333

 ISPCCSID CCSID=00444,TO=TRT00444,FROM=TRF00444

*

*

TRTO500 DC XL191’... 00222 TO 00500

TRFR500 DC XL191’... 00222 FROM 00500 (00500 TO 00222)

*

*

TRT00333 DC XL191’... 00222 TO 00333

Figure 84. ISP00222 translate module with two direct CCSID entries

350 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

CCSID=00930 or CCSID=00939 is specified in a panel, message, or in the TRANS

service) to the U.S. English (CECP and base) code page, to the extended and base

Katakana, and to the Japanese (Latin) Extended code pages for code points X’81’,

X’62’ and X’59’.

 Table 23. Character translation from extended katakana code page

Destination Code Page

Source

CCSID=00930 Translation

Source

CCSID=00939 Translation

Base Katakana

(base code page)

X’81’

X’62’

X’81’

X’C1’

X’81’

X’59’

X’C1’

X’81’

Extended Katakana

(CCSID=00930)

X’81’

X’62’

X’81’

X’62’

X’81’

X’59’

X’62’

X’81’

U.S. English CECP

 and Non-CECP

Japanese (Latin)

 Non-Extended

X’81’

X’62’

X’4B’

X’81’

X’81’

X’59’

X’81’

X’4B’

Japanese (Latin) Extended

(CCSID=00939)

X’81’

X’62’

X’59’

X’81’

X’81’

X’59’

X’81’

X’59’

Code Points Character Translation

X’81’ A Katakana character in the Katakana code pages and is lowercase

a in the U.S. English (CECP and base) and Japanese (Latin)

(Extended and base) code pages.

X’62’ Lowercase a in the extended Katakana (CCSID=00930) code page, a

Katakana character in the extended Japanese (Latin)

(CCSID=00939) code page, and is an unknown character in the U.S.

English, base Japanese (Latin), and base Katakana code pages.

X’59’ A Katakana character in the Japanese (Latin) Extended

(CCSID=00939) code page, and an unknown character in the other

code pages.

X’C1’ Uppercase A and X’4B’ is a period (.) in all of the previously

mentioned code pages.

Supported CCSIDs

The CCSIDs listed in Table 24 are supported for panels and messages that specify

an EXTENDED CODE PAGE and for the TRANS service.

 Table 24. Extended CCSID1 Supported

CCSID Character Set Code Page Country/Language

00037 697 37 U.S.A.

Canada

Netherlands

Portugal

Brazil

Australia

New Zealand

00273 697 273 Austria

Germany

00277 697 277 Denmark

Norway

Chapter 11. Extended code page support 351

Table 24. Extended CCSID1 Supported (continued)

CCSID Character Set Code Page Country/Language

00278 697 278 Finland

Sweden

00280 697 280 Italy

00284 697 284 Spain

L.A. Spanish

00285 697 285 United Kingdom

00297 697 297 France

00420 235 420 Arabic

00424 941 424 Hebrew

00500 697 500 Switzerland

Belgium

00838 1176 838 Thailand

00870 959 870 Latin-2

00871 697 871 Iceland

00875 923 875 Greece

00880 960 880 Cyrillic

01025 1150 1025 Cyrillic

01026 1126 1026 Turkey

01047 697 1047 Latin1

01123 1326 1123 Ukraine

 Table 25. Extended CCSID1 Supported (EURO)

CCSID Character Set Code Page Country/Language

00924 1353 0924 Latin9

01140 695 1140 U.S.A.

Canada

Netherlands

Portugal

Brazil

Australia

New Zealand

01141 695 1141 Austria

Germany

01142 695 1142 Denmark

Norway

01143 695 1143 Finland

Sweden

01144 695 1144 Italy

01145 695 1145 Spain

L.A. Spanish

01146 695 1146 United Kingdom

01147 695 1147 France

01148 695 1148 Switzerland

Belgium

352 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Table 25. Extended CCSID1 Supported (EURO) (continued)

CCSID Character Set Code Page Country/Language

01149 695 1149 Iceland

01153 1375 1153 Latin2

01154 1381 1154 Cyrillic

01155 1378 1155 Turkey

01158 1388 1158 Ukraine

01160 1395 1160 Thailand

04899 1356 0803 Hebrew

04971 1371 0875 Greece

12712 1357 0424 Hebrew

16804 1461 0420 Arabic

The extended CCSIDs shown in Table 25 on page 352 and Table 26 are supported

for the TRANS service, and also with the use of the CCSID keyword in panels and

messages. These are the mixed SBCS/DBCS CCSIDs for these languages.

Japanese (Katakana) and Simplified Chinese EXTENDED CODE PAGES are not

supported on any terminal, but these CCSIDs are supported by ISPF for the

TRANS service and for tagging panels and messages.

Note: Although these CCSIDs represent both SBCS and DBCS character sets and

code pages, only the SBCS character set and code page are involved in the

EXTENDED CODE PAGE support in ISPF.

 Table 26. Extended SBCS and DBCS CCSIDs Supported

CCSID Character Set Code Page Country

00930 1172 290 Japanese (Katakana)

00939 1172 1027 Japanese (Latin)

00933 1173 833 Korean

00935 1174 836 Simplified Chinese

00937 1175 037 Traditional Chinese

01159 65535 1159 Traditional Chinese

01364 65535 0834 Korean

01371 65535 0835 Traditional Chinese

01388 65535 0837 Simplified Chinese

01390 65535 0300 Japanese

01399 65535 0300 Japanese

05123 65535 1027 Japanese

08482 65535 0290 Japanese

Base code pages for terminals

Translation to base character sets and code pages is supported for panels,

messages, and the TRANS service. See “Base CCSIDs” on page 355.

Chapter 11. Extended code page support 353

Direct translation between each base code page and its EXTENDED CODE PAGE

is provided. Also, direct translation between both base and extended Japanese

(Katakana) and both base and extended Japanese (Latin or English) is provided. All

translation between the single-byte EXTENDED CODE PAGES for the double-byte

languages and the CECP code pages is through CCSID 00500.

Adding translate tables for extended code page support

You can add code pages to be used for messages and panels that specify code page

and for the TRANS service by creating these translate tables using the sample

assembler module ISPEXCP as an example. (ISPEXCP is provided in the

SYS1.SAMPLIB library in the MVS environment.) The tables to translate between

the new code page and CCSID 00500 are needed to reduce the number of translate

tables necessary to translate characters between the new code page and any other

supported (or added) code page. For example, to translate characters from a panel

with CCSID=xxxxx to a terminal with CCSID=yyyyy, the characters in the panel

are first translated to CCSID 00500 and then from CCSID 00500 to CCSID yyyyy

for display on the terminal.

Note: The translate tables for the CCSIDs listed in Table 24 on page 351 and

Table 26 on page 353 are provided and included with ISPF. Also, see

“Extended code page translate tables provided by ISPF” on page 356.

Any translate tables that are added must be named ISPnnnnn, where nnnnn is the

CCSID. The translate tables should include code points X’40’ through X’FE’.

v This example illustrates the translation to CCSID 00500 from CCSID xxxxx,

where xxxxx is the CCSID for the new code page. This CCSID must be different

from any of the supported CCSIDs previously listed, and should be a CCSID

defined in the Character Data Representation Architecture. In Figure 85, xxxxx is

00037.

v Figure 86 on page 355 illustrates the translation to CCSID xxxxx from CCSID

00500, where xxxxx is the CCSID for the new code page. This CCSID must be

different from any of the supported CCSIDs previously listed, and should be a

CCSID defined in the Character Data Representation Architecture. In this

example, xxxxx is 00037.

 Table Hexadecimal Code Position

 -------- ------------------------ -------------

 TO_500 DC X’4041424344454647’ (X’40’ to X’47’)

 DC X’4849B04B4C4D4EBB’ (X’48’ to X’4F’)

 DC X’5051525354555657’ (X’50’ to X’57’)

 DC X’58594F5B5C5D5EBA’ (X’58’ to X’5F’)

 . . .

 DC X’78797A7B7C7D7E7F’ (X’78’ to X’7F’)

 DC X’8081828384858687’ (X’80’ to X’87’)

 . . .

 DC X’E8E9EAEBECEDEEEF’ (X’E8’ to X’EF’)

 DC X’F0F1F2F3F4F5F6F7’ (X’F0’ to X’F7’)

 DC X’F8F9FAFBFCFDFE’ (X’F8’ to X’FE’)

Figure 85. Translation to CCSID 00500 from CCSID XXXXX

354 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

v Optionally, any number of pairs of to and from tables can be provided for direct

translation from the new CCSID to and from another CCSID.

The assembler macro, ISPCCSID, is supplied with ISPF to allow you to generate

custom ISPxxxxx translate load modules (where xxxxx is the new CCSID). Calls to

this macro must also be coded for the To_500 and From_500 tables and any to and

from tables for direct translation. The load module must either have the name

ISPxxxxx (where xxxxx is the new CCSID) or an alias of ISPxxxxx. See “ISPccsid

translate load modules” on page 348, “ISPccsid translate load module generation

macro” on page 349, and “ISPCCSID macro” on page 349.

Note: New translate tables can still be added based on terminal type as described

in z/OS ISPF Planning and Customizing for untagged messages and panels.

Direct to and from translate tables can be added for direct translation (to prevent

possible loss of characters through CCSID 00500 for character sets other than 697).

Additional direct translation tables can also be added to the extended code page

translate tables provided by ISPF. The direct translation CCSID must be one of the

CCSIDs supported by ISPF, or added by the user. If the CCSID of the terminal is

the same as the CCSID in any of the direct translation tables, those tables are used.

Otherwise, the To_500 and From_500 tables are used to translate through CCSID

00500.

Note: Both to and from translate tables must be provided for direct translation

tables as well as CCSID 00500 tables, even though there may be no

translation needed. For example, to translate from a base CCSID to an

extended CCSID for the same code page, all characters will translate to

themselves.

Base CCSIDs

The CCSIDs for the BASE CODE PAGES supported by ISPF (that include mixed

SBCS/DBCS CCSIDs for the DBCS languages) are listed in Table 27.

 Table 27. Base CCSIDs Supported

CCSID Character Set Code Page Country/Language

00803 1147 424 Hebrew (Old)

00931 101 037 Japan (English)

 Table Hexadecimal Code Position

 -------- ------------------------ -------------

 FROM_500 DC X’4041424344454647’ (X’40’ to X’47’)

 DC X’4849BA4B4C4D4E5A’ (X’48’ to X’4F’)

 DC X’5051525354555657’ (X’50’ to X’57’)

 DC X’5859BB5B5C5D5EB0’ (X’58’ to X’5F’)

 . . .

 DC X’78797A7B7C7D7E7F’ (X’78’ to X’7F’)

 DC X’8081828384858687’ (X’80’ to X’87’)

 . . .

 DC X’E8E9EAEBECEDEEEF’ (X’E8’ to X’EF’)

 DC X’F0F1F2F3F4F5F6F7’ (X’F0’ to X’F7’)

 DC X’F8F9FAFBFCFDFE’ (X’F8’ to X’FE’)

Figure 86. Translation to CCSID XXXXX from CCSID 00500

Chapter 11. Extended code page support 355

Table 27. Base CCSIDs Supported (continued)

CCSID Character Set Code Page Country/Language

04369 265 273 Germany and Austria

04371 273 275 Brazil

04373 281 277 Denmark and Norway

04374 285 278 Finland and Sweden

04376 293 280 Italy

04380 309 284 L.A. (Spanish Speaking)

04381 313 285 U.K. English

04393 1129 297 France

04934 938 838 Thailand

04966 959 870 Latin-2

04976 960 880 Cyrillic

05029 933 833 Korean

05031 936 836 Simplified Chinese

05033 101 037 Traditional Chinese

08229 101 037 U.S. English and Netherlands

08476 650 284 Spain

09122 332 290 Japan (Katakana)

41460 904 500 Switzerland

45556 908 500 Switzerland

Note: Although the CCSIDs for the DBCS languages (Japanese, Korean, and

Chinese) represent both SBCS and DBCS character sets and code pages, only

the SBCS character set and code page are involved in the EXTENDED

CODE PAGE support in ISPF.

Extended code page translate tables provided by ISPF

The translate tables provided by ISPF that can be updated by the user are as

follows:

v ISPSTC1 (CCSID=00037 / 01140 U.S.A., Canada, Netherlands, Portugal, Brazil,

Australia, New Zealand)

v ISPSTC2 (CCSID=00273 / 01141 Austria and Germany)

v ISPSTC3 (CCSID=00277 / 01142 Denmark and Norway)

v ISPSTC4 (CCSID=00278 / 01143 Finland and Sweden)

v ISPSTC5 (CCSID=00280 / 01144 Italy)

v ISPSTC6 (CCSID=00284 / 01145 Spain and Spanish-Speaking)

v ISPSTC7 (CCSID=00285 / 01146 United Kingdom)

v ISPSTC8 (CCSID=00297 / 01147 France)

v ISPSTC9 (CCSID=00500 / 01148 Switzerland and Belgium)

v ISPSTC10 (CCSID=00939 Japan (Latin))

v ISPSTC11 (CCSID=00930 Japan (Katakana))

v ISPSTC12 (CCSID=00933 Korea)

v ISPSTC13 (CCSID=00935 Simplified Chinese)

v ISPSTC14 (CCSID=00937 Traditional Chinese)

v ISPSTC15 (CCSID=00870 Latin-2)

v ISPSTC16 (CCSID=00880 Cyrillic)

356 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

v ISPSTC17 (CCSID=01025 Cyrillic)

v ISPSTC18 (CCSID=00420 Arabic)

v ISPSTC19 (CCSID=00424 Hebrew)

v ISPSTC20 (CCSID=00838 Thai)

v ISPSTC21 (CCSID=00871 / 1149 Iceland)

v ISPSTC22 (CCSID=00875 Greek)

v ISPSTC23 (CCSID=01026 Turkish).

The source for the previous modules is provided in the SYS1.SAMPLIB library in

the MVS environment.

Example of user-modifiable ISPF translate table

The module shown is for CCSID 00037 (ISPSTC1). The existing tables can be

modified, or more pairs of direct translation tables can be added. To add direct

translation tables, add a new ISPCCSID macro call for the new direct translate

tables, and add the new tables. Rename the assembler program to ISPTTCx(x),

where x(x) is the last 1- or 2-digit number of the ISPSTCx(x) name. For example,

ISPSTC1 should be renamed ISPTTC1, and ISPSTC14 renamed ISPTTC14.

* THE FOLLOWING MACROS WILL GENERATE THE CCSID 00037 MODULE.

*

*

 ISPCCSID CCSID=00037,TO=TTC1T5H,FROM=TTC1F5H

 ISPCCSID CCSID=08229,TO=TTC1TB1,FROM=TTC1FB2

 ISPCCSID CCSID=04371,TO=TTC1TB2,FROM=TTC1FB2

*

* TTC1T5H - CCSID 00037 TO CCSID 00500 Table

*

TTC1T5H DS 0XL191

 DC X’4041424344454647’ (X’40’ TO X’47’)

 DC X’4849B04B4C4D4EBB’ (X’48’ TO X’4F’)

 DC X’5051525354555657’ (X’50’ TO X’57’)

 DC X’58594F5B5C5D5EBA’ (X’58’ TO X’5F’)

 DC X’6061626364656667’ (X’60’ TO X’67’)

 DC X’68696A6B6C6D6E6F’ (X’68’ TO X’6F’)

 DC X’7071727374757677’ (X’70’ TO X’77’)

 DC X’78797A7B7C7D7E7F’ (X’78’ TO X’7F’)

 DC X’8081828384858687’ (X’80’ TO X’87’)

 DC X’88898A8B8C8D8E8F’ (X’88’ TO X’8F’)

 DC X’9091929394959697’ (X’90’ TO X’97’)

 DC X’98999A9B9C9D9E9F’ (X’98’ TO X’9F’)

 DC X’A0A1A2A3A4A5A6A7’ (X’A0’ TO X’A7’)

 DC X’A8A9AAABACADAEAF’ (X’A8’ TO X’AF’)

 DC X’5FB1B2B3B4B5B6B7’ (X’B0’ TO X’B7’)

 DC X’B8B94A5ABCBDBEBF’ (X’B8’ TO X’BF’)

 DC X’C0C1C2C3C4C5C6C7’ (X’C0’ TO X’C7’)

 DC X’C8C9CACBCCCDCECF’ (X’C8’ TO X’CF’)

 DC X’D0D1D2D3D4D5D6D7’ (X’D0’ TO X’D7’)

 DC X’D8D9DADBDCDDDEDF’ (X’D8’ TO X’DF’)

 DC X’E0E1E2E3E4E5E6E7’ (X’E0’ TO X’E7’)

 DC X’E8E9EAEBECEDEEEF’ (X’E8’ TO X’EF’)

 DC X’F0F1F2F3F4F5F6F7’ (X’F0’ TO X’F7’)

 DC X’F8F9FAFBFCFDFE’ (X’F8’ TO X’FE’)

*

* TTC1F5H - CCSID 00037 FROM CCSID 00500 Table

*

TTC1F5H DS 0XL191

 DC X’4041424344454647’ (X’40’ TO X’47’)

 DC X’4849BA4B4C4D4E5A’ (X’48’ TO X’4F’)

 DC X’5051525354555657’ (X’50’ TO X’57’)

 DC X’5859BB5B5C5D5EB0’ (X’58’ TO X’5F’)

 DC X’6061626364656667’ (X’60’ TO X’67’)

 DC X’68696A6B6C6D6E6F’ (X’68’ TO X’6F’)

 DC X’7071727374757677’ (X’70’ TO X’77’)

Chapter 11. Extended code page support 357

DC X’78797A7B7C7D7E7F’ (X’78’ TO X’7F’)

 DC X’8081828384858687’ (X’80’ TO X’87’)

 DC X’88898A8B8C8D8E8F’ (X’88’ TO X’8F’)

 DC X’9091929394959697’ (X’90’ TO X’97’)

 DC X’98999A9B9C9D9E9F’ (X’98’ TO X’9F’)

 DC X’A0A1A2A3A4A5A6A7’ (X’A0’ TO X’A7’)

 DC X’A8A9AAABACADAEAF’ (X’A8’ TO X’AF’)

 DC X’4AB1B2B3B4B5B6B7’ (X’B0’ TO X’B7’)

 DC X’B8B95F4FBCBDBEBF’ (X’B8’ TO X’BF’)

 DC X’C0C1C2C3C4C5C6C7’ (X’C0’ TO X’C7’)

 DC X’C8C9CACBCCCDCECF’ (X’C8’ TO X’CF’)

 DC X’D0D1D2D3D4D5D6D7’ (X’D0’ TO X’D7’)

 DC X’D8D9DADBDCDDDEDF’ (X’D8’ TO X’DF’)

 DC X’E0E1E2E3E4E5E6E7’ (X’E0’ TO X’E7’)

 DC X’E8E9EAEBECEDEEEF’ (X’E8’ TO X’EF’)

 DC X’F0F1F2F3F4F5F6F7’ (X’F0’ TO X’F7’)

 DC X’F8F9FAFBFCFDFE’ (X’F8’ TO X’FE’)

*

* TTC1TB1 - CCSID 00037 TO CCSID 08229 Table

*

TTC1TB1 DS 0XL191

 DC X’404B4B4B4B4B4B4B’ (X’40’ TO X’47’)

 DC X’4B4B4A4B4C4D4E4F’ (X’48’ TO X’4F’)

 DC X’504B4B4B4B4B4B4B’ (X’50’ TO X’57’)

 DC X’4B4B5A5B5C5D5E5F’ (X’58’ TO X’5F’)

 DC X’60614B4B4B4B4B4B’ (X’60’ TO X’67’)

 DC X’4B4B6A6B6C6D6E6F’ (X’68’ TO X’6F’)

 DC X’4B4B4B4B4B4B4B4B’ (X’70’ TO X’77’)

 DC X’4B797A7B7C7D7E7F’ (X’78’ TO X’7F’)

 DC X’4B81828384858687’ (X’80’ TO X’87’)

 DC X’88894B4B4B4B4B4B’ (X’88’ TO X’8F’)

 DC X’4B91929394959697’ (X’90’ TO X’97’)

 DC X’98994B4B4B4B4B4B’ (X’98’ TO X’9F’)

 DC X’4BA1A2A3A4A5A6A7’ (X’A0’ TO X’A7’)

 DC X’A8A94B4B4B4B4B4B’ (X’A8’ TO X’AF’)

 DC X’4B4B4B4B4B4B4B4B’ (X’B0’ TO X’B7’)

 DC X’4B4B4B4B4B4B4B4B’ (X’B8’ TO X’BF’)

 DC X’C0C1C2C3C4C5C6C7’ (X’C0’ TO X’C7’)

 DC X’C8C94B4B4B4B4B4B’ (X’C8’ TO X’CF’)

 DC X’D0D1D2D3D4D5D6D7’ (X’D0’ TO X’D7’)

 DC X’D8D94B4B4B4B4B4B’ (X’D8’ TO X’DF’)

 DC X’E04BE2E3E4E5E6E7’ (X’E0’ TO X’E7’)

 DC X’E8E94B4B4B4B4B4B’ (X’E8’ TO X’EF’)

 DC X’F0F1F2F3F4F5F6F7’ (X’F0’ TO X’F7’)

 DC X’F8F94B4B4B4B4B’ (X’F8’ TO X’FE’)

*

* TTC1FB1 - CCSID 00037 FROM CCSID 08229 Table

*

TTC1FB1 DS 0XL191

 DC X’4041424344454647’ (X’40’ TO X’47’)

 DC X’48494A4B4C4D4E4F’ (X’48’ TO X’4F’)

 DC X’5051525354555657’ (X’50’ TO X’57’)

 DC X’58595A5B5C5D5E5F’ (X’58’ TO X’5F’)

 DC X’6061626364656667’ (X’60’ TO X’67’)

 DC X’68696A6B6C6D6E6F’ (X’68’ TO X’6F’)

 DC X’7071727374757677’ (X’70’ TO X’77’)

 DC X’78797A7B7C7D7E7F’ (X’78’ TO X’7F’)

 DC X’8081828384858687’ (X’80’ TO X’87’)

 DC X’88898A8B8C8D8E8F’ (X’88’ TO X’8F’)

 DC X’9091929394959697’ (X’90’ TO X’97’)

 DC X’98999A9B9C9D9E9F’ (X’98’ TO X’9F’)

 DC X’A0A1A2A3A4A5A6A7’ (X’A0’ TO X’A7’)

 DC X’A8A9AAABACADAEAF’ (X’A8’ TO X’AF’)

 DC X’B0B1B2B3B4B5B6B7’ (X’B0’ TO X’B7’)

 DC X’B8B9BABBBCBDBEBF’ (X’B8’ TO X’BF’)

 DC X’C0C1C2C3C4C5C6C7’ (X’C0’ TO X’C7’)

 DC X’C8C9CACBCCCDCECF’ (X’C8’ TO X’CF’)

358 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

DC X’D0D1D2D3D4D5D6D7’ (X’D0’ TO X’D7’)

 DC X’D8D9DADBDCDDDEDF’ (X’D8’ TO X’DF’)

 DC X’E0E1E2E3E4E5E6E7’ (X’E0’ TO X’E7’)

 DC X’E8E9EAEBECEDEEEF’ (X’E8’ TO X’EF’)

 DC X’F0F1F2F3F4F5F6F7’ (X’F0’ TO X’F7’)

 DC X’F8F9FAFBFCFDFE’ (X’F8’ TO X’FE’)

*

* TTC1TB2 - CCSID 00037 TO CCSID 04371 Table

*

TTC1TB2 DS 0XL191

 DC X’404B4B4B4B4B794B’ (X’40’ TO X’47’)

 DC X’4B4B4B4B4C4D4E4B’ (X’48’ TO X’4F’)

 DC X’50D04B4B4B4B4B4B’ (X’50’ TO X’57’)

 DC X’4B4B4F5A5C5D5E4B’ (X’58’ TO X’5F’)

 DC X’60614B4B4B4B7C4B’ (X’60’ TO X’67’)

 DC X’5B4B4B6B6C6D6E6F’ (X’68’ TO X’6F’)

 DC X’4B4A4B4B4B4B4B4B’ (X’70’ TO X’77’)

 DC X’4B4B7A4B4B7D7E7F’ (X’78’ TO X’7F’)

 DC X’4B81828384858687’ (X’80’ TO X’87’)

 DC X’88894B4B4B4B4B4B’ (X’88’ TO X’8F’)

 DC X’4B91929394959697’ (X’90’ TO X’97’)

 DC X’98994B4B4B4B4B4B’ (X’98’ TO X’9F’)

 DC X’4BA1A2A3A4A5A6A7’ (X’A0’ TO X’A7’)

 DC X’A8A94B4B4B4B4B4B’ (X’A8’ TO X’AF’)

 DC X’5F44B4BB4B4B4B4B’ (X’B0’ TO X’B7’)

 DC X’4B4B4B4B4B4B4B4B’ (X’B8’ TO X’BF’)

 DC X’4BC1C2C3C4C5C6C7’ (X’C0’ TO X’C7’)

 DC X’C8C94B4B4B4B4BC0’ (X’C8’ TO X’CF’)

 DC X’4BD1D2D3D4D5D6D7’ (X’D0’ TO X’D7’)

 DC X’D8D94B4B4B4B4B4B’ (X’D8’ TO X’DF’)

 DC X’E04BE2E3E4E5E6E7’ (X’E0’ TO X’E7’)

 DC X’E8E94B4B4B4B4B7B’ (X’E8’ TO X’EF’)

 DC X’F0F1F2F3F4F5F6F7’ (X’F0’ TO X’F7’)

 DC X’F8F94B4B4B4B4B’ (X’F8’ TO X’FE’)

*

* TTC1FB2 - CCSID 00037 FROM CCSID 04371 Table

*

TTC1FB2 DS 0XL191

 DC X’4041424344454647’ (X’40’ TO X’47’)

 DC X’4849714B4C4D4E5A’ (X’48’ TO X’4F’)

 DC X’5051525354555657’ (X’50’ TO X’57’)

 DC X’58595B685C5D5EB0’ (X’58’ TO X’5F’)

 DC X’6061626364656667’ (X’60’ TO X’67’)

 DC X’6869486B6C6D6E6F’ (X’68’ TO X’6F’)

 DC X’7071727374757677’ (X’70’ TO X’77’)

 DC X’78467AEF667D7E7F’ (X’78’ TO X’7F’)

 DC X’8081828384858687’ (X’80’ TO X’87’)

 DC X’88898A8B8C8D8E8F’ (X’88’ TO X’8F’)

 DC X’9091929394959697’ (X’90’ TO X’97’)

 DC X’98999A9B9C9D9E9F’ (X’98’ TO X’9F’)

 DC X’A0A1A2A3A4A5A6A7’ (X’A0’ TO X’A7’)

 DC X’A8A9AAABACADAEAF’ (X’A8’ TO X’AF’)

 DC X’B0B1B2B3B4B5B6B7’ (X’B0’ TO X’B7’)

 DC X’B8B9BABBBCBDBEBF’ (X’B8’ TO X’BF’)

 DC X’CFC1C2C3C4C5C6C7’ (X’C0’ TO X’C7’)

 DC X’C8C9CACBCCCDCECF’ (X’C8’ TO X’CF’)

 DC X’51D1D2D3D4D5D6D7’ (X’D0’ TO X’D7’)

 DC X’D8D9DADBDCDDDEDF’ (X’D8’ TO X’DF’)

 DC X’E0E1E2E3E4E5E6E7’ (X’E0’ TO X’E7’)

 DC X’E8E9EAEBECEDEEEF’ (X’E8’ TO X’EF’)

 DC X’F0F1F2F3F4F5F6F7’ (X’F0’ TO X’F7’)

 DC X’F8F9FAFBFCFDFE’ (X’F8’ TO X’FE’)

 END

Chapter 11. Extended code page support 359

360 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Appendix A. Character translations for APL, TEXT, and

Katakana

This topic contains the character translation tables for APL, TEXT, and Katakana.

This information does not include Extended Code Page Support. See Chapter 11,

“Extended code page support,” on page 347.

ISPF permits use of all keyboards for all models of 3270 and 3290 terminals, and

text keyboards for 3278 and 3279 terminals. The 2-byte transmission codes for APL

and text characters are translated by ISPF into 1-byte codes for internal storage as

shown in Figure 87 on page 362 and Figure 88 on page 363. ISPF also permits use

of 3277 and 3278 Japanese Katakana terminals. ISPF does not permit the use of

3277 and 3278 Katakana terminals and an APL terminal at the same time.

The character codes are documented in IBM 3270 hardware manuals. Many of the

Katakana codes overlay the lowercase EBCDIC codes. In a panel definition, it is

assumed that lowercase EBCDIC characters are to be displayed for these codes,

unless the)BODY header statement includes the keyword KANA. Example:

)BODY KANA

The keyword, KANA, is used on a)BODY header statement when Katakana

characters are included within the panel. Input and output fields and model line

fields are not affected by use of the KANA keyword. Rules for display of text

fields are as follows:

v If the terminal type is Katakana, and

– The KANA keyword is present, text characters are left as is.

– The KANA keyword is not present, any lowercase text characters are

translated to uppercase and uppercase text characters are left as is.
v If the terminal type is not Katakana, and

– The KANA keyword is present, any lowercase text characters are treated as

being nondisplayable and are translated to a period. Any uppercase text

characters are left as is.

– The KANA keyword is not present, lowercase and uppercase text characters

are left as is.

See “How to define a message” on page 308 for a description of how the KANA

keyword provides a similar function for messages containing lowercase characters

that must be displayed on a Katakana terminal.

Note: The KANA keyword is not needed for panels and messages that specify a

CCSID for Extended Code Page Support. See Chapter 11, “Extended code

page support,” on page 347.

© Copyright IBM Corp. 1980, 2007 361

00

10

20

30

40

50

60

70

80

90

A0

B0

C0

D0

E0

F0

0 1 2 3 4 5 6 7 8 9 A B C D E F

sp A B C D E F G H I ¢ . (+

& J K L M N O P Q R ! $ *) ;

/ S T U V W X Y Z , %

v : # @ =

a b c d e f g h i

j k l m n o p q r o

s t u v w x y z

A B C D E F G H I

J K L M N O P Q R

S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

Figure 87. Internal character representations for APL keyboards

Character translations

362 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

00

10

20

30

40

50

60

70

80

90

A0

B0

C0

D0

E0

F0

0 1 2 3 4 5 6 7 8 9 A B C D E F

sp ¢ . (+

& 1 2 3 ! $ *) ;

/ , %

: # @ =

a b c d e f g h i

j k l m n o p q r

s t u v w x y z

A B C D E F G H I

J K L M N O P Q R

S T U V W X Y Z

1 2 3 4 5 6 7 8 9

n o

0 1 2 3 4 5 6 7 8 9

(

)

Figure 88. Internal character representations for text keyboards

Appendix A. Character translations for APL, TEXT, and Katakana 363

364 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Appendix B. ISPTTDEF specify translate table set

ISPF provides a program, ISPTTDEF, for specifying the set of terminal translate

tables to be used. This program lets you specify private sets of translate tables.

Note: This program is not used for Extended Code Page Support translate tables.

See Chapter 11, “Extended code page support,” on page 347.

You can invoke ISPTTDEF from a selection panel, as a command, or from a dialog

function. The format of the ISPTTDEF program call is:

SELECT PGM(ISPTTDEF) PARM(xxx)

where xxx is the terminal type or the name of the load module containing translate

tables.

Return codes from invoking ISPTTDEF are as follows:

0 Normal completion

4 Translate tables could not be loaded

 Valid terminal types are those that can be specified using the ISPF Settings panel.

If the name specified is not a valid terminal type, ISPF attempts to load a module

having that name.

© Copyright IBM Corp. 1980, 2007 365

366 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Appendix C. Diagnostic Tools and Information

This chapter covers the following topics:

v debugging tools

v The panel trace and file-tailoring trace utilities

v diagnostic information

v common problems that can occur when developing dialogs and using ISPF

ISPF debug tools

The following tools ship with ISPF as samples.

ISRABEND A CLIST that provides a step-by-step explanation of how to

diagnose an abend interactively. It uses TSO TEST to gather the

information that the IBM support organization normally requires.

ISRCSECT A REXX exec used in conjunction with ISRTCB exec. It takes the

entry point of a load module and begins searching for a specific

CSECT. If it finds one, the exec displays the CSECT’s eye-catcher.

ISRFIND A REXX exec that issues a LISTA STATUS and searches for a

specified member or load module. Also, the exec optionally calls

AMBLIST to check the MODIFIED, FIXED, and PAGEABLE LPAs

and checks LPALIST and LNKLST (pointed to by system control

blocks) for the specified load module. If invoked under ISPF, the

information is displayed via an ISPF table display (panel

ISRFINDP) and allows the user to BROWSE or EDIT the specified

member.

ISRPOINT A REXX exec used in conjunction with the ISRTCB exec. This exec

uses the entry point address obtained from ISRTCB and lists the

CSECT eye-catchers associated with that load module.

ISRTCB A REXX exec that emulates the TSO TEST command LISTMAP. It

lists the TCBs and the load modules (with their entry points)

associated with each TCB, without using TSO TEST.

ISRTEST A CLIST that uses TSO TEST to load the job pack area (JPA) and

set breakpoints on entry to a specific ISPF or PDF CSECT. This

allows for the verification of the compilation date associated with

the CSECT with the most recent maintenance level for that version

or release. Additionally, you can modify this sample to set specific

breakpoints within the CSECT to identify the failing instruction.

Panel trace command (ISPDPTRC)

The ISPDPTRC command traces the Dialog Manager panel processing that occurs

within any screen in the current ISPF session. You can trace both the execution of

panel service calls (DISPLAY, TBDISPL, and TBQUERY) and the processing that

occurs within the Dialog Manager panel code, including the processing of

statements in the)ABCINIT,)ABCPROC,)INIT,)REINIT, and)PROC sections of

the panel.

© Copyright IBM Corp. 1980, 2007 367

The output from the trace is written to a dynamically allocated VB (variable

blocked) data set that has a record length of 255. Where the ddname ISPDPTRC is

preallocated, this data set will be used, providing it refers to a sequential, VB data

set with a record length of at least 255.

The ISPDPTRC command starts the trace if it is not running. If the trace is already

active, ISPDPTRC allows you to stop and optionally to view or edit the trace

output. ISPDPTRC must be executed while ISPF is active.

The syntax of the command is:

 Where:

END Terminates the trace if it is active. No attempt is made to edit or view the

trace data set.

VIEW Terminates the trace if it is active and views the trace data set. If an

allocation for the DD ISPDPTRC is present, this data set is viewed.

SYSOUT data sets are not supported.

 When VIEW is unable to locate the trace data set, it performs the LIST

processing and displays the list of panel trace data sets.

LIST The panel trace command invokes the Data Set List Utility to display panel

trace data sets.

 Where the user’s prefix is not blank, the data set list displayed is for data

sets of the form:

prefix.**.ISPPNL.TRACE

Otherwise, the data set list displayed is for data sets of the form:

userid.**.ISPPNL.TRACE

QUIET

Prevents trace initialization and termination messages being displayed.

Error messages continue to be displayed on the screen.

DISPLAY

Controls the generation of trace records resembling the panel as displayed

at the terminal. Only the panel for the active screen is shown when a panel

is being read into memory.

None No trace records are produced during panel display processing.

In Generates trace records showing the panel, including data entered

after the user has pressed the Enter key or a function key.

Out Generates trace records showing the panel as it shown on the

screen. Attribute bytes are also represented in the screen display.

Both Generates both the In and Out display traces. This is the default.

ISPDPTRC [END]

 [VIEW]

 [LIST]

 [QUIET]

 [DSP|DISPLAY(None | In | Out | Both)]

 [PNL|PANEL(* | panel_name | panel_mask)]

 [READ(None | Summary | Detail)]

 [SCR|SCREEN(0 | * | screen_id)]

 [SECT|SECTION(* | All | None | [Init] [Reinit] [Proc] |

 [NOInit] [NOReinit] [NOProc])]

 [SVC|SERVICE(None | Detail)]

Panel trace command (ISPDPTRC)

368 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

|

|
|

||
|

|
|

|

|

|

|

PANEL

Controls the generation of trace records based on the panel name.

* Generate trace records for all panels. This is the default.

panel_name Generates trace records only for the panel name as

specified.

panel_mask Generates trace records for panels matching panel_mask.

The mask can contain % to represent a single character or *

to represent any number of characters.

Note: Panel service calls (DISPLAY, TBDISPL, and TBQUERY) continue to

be traced for all panels, regardless of the panel_name or panel_mask

parameter specified.

READ Controls the generation of trace records when a panel is being read into

memory.

None No trace records are produced during the read processing.

Summary

Generates summary information, including where the panel was

loaded from (either an ISPPLIB or LIBDEF data set), and the

number of records read until the)END statement was detected.

This is the default setting.

Detail Generates the same information as for the summary trace, but

includes the panel source. Preprocessed panels can not be

displayed.

SCREEN

Controls the generation of trace records based on the screen ID.

0 Generate trace records for the all logical screens. This is the default.

* Generate trace records for the current screen ID.

screen_id

Generate trace records only for the logical screen ID as specified.

The screen ID is a single character in the range 1-9, A-W.

SECTION

Controls the generation of trace records for the different panel logic

sections. The default is all sections.

* | All Generates trace records for all sections. Either form of this

parameter can only be specified by itself, and not with any

of the other SECTION parameter values.

None Generates no trace records for any of the panel processing

logic sections. This parameter can only be specified by

itself and not in conjunction with any of the other

SECTION parameter values.

Init Generates trace records for the)ABCINIT and)INIT

sections.

Reinit Generates trace records for the)REINIT section.

Proc Generates trace records for the)ABCPROC and)PROC

sections.

NOInit Turns off the generation of trace records for the)ABCINIT

and)INIT sections.

Panel trace command (ISPDPTRC)

Appendix C. Diagnostic Tools and Information 369

NOReinit Turns off the generation of trace records for the)REINIT

section.

NOProc Turns off the generation of trace records for the)ABCPROC

and)PROC sections.

SERVICE

Controls the generation of trace records for the panel processing service

calls, namely DISPLAY, TBDISPL and TBQUERY.

None No trace records are produced during the service call processing.

Detail Generates trace records for the DISPLAY, TBDISPL, and TBQUERY

service calls, showing all the parameters. A trace record is

produced both before and after the call processing, with the post

record showing the return code from the service. This is the default

setting.

Notes:

1. Where neither the END nor VIEW parameters is provided, the panel trace is

started if it is not already active, otherwise the trace is stopped and where

possible you are put into an edit session with the trace output.

2. When the panel trace is already active, only the END and VIEW parameters

have any effect on the command. All other valid parameters are ignored. If

invalid parameters are entered the command terminates without starting to

process the trace.

Trace format

Panel trace header

 The trace header shows the following information:

1. Current date and time (GMT) when the trace was initialized

2. ISPF level information as found in dialog variable ZISPFOS

3. z/OS level information as found in dialog variable ZOS390RL

4. ISPDPTRC command with the invocation parameters

========= ISPF Panel Trace ==================== 2004.243 04:53:20 GMT ==========

 ZISPFOS: ISPF FOR z/OS 02.07.00 ZOS390RL: z/OS 02.07.00

 ISPDPTRC Command: ISPDPTRC

 Options in Effect: PANEL(*) SCREEN(0) SECTION(INIT REINIT PROC)

 SERVICE(DETAIL) SOURCE(SUMMARY) DISPLAY(BOTH)

 Physical Display: PRI=24x80 ALT=60x132 GUI=OFF

 ISPCDI Version: ISPCDI 04237-BASE z/27

 ISPDPA Version: ISPDPA 04243-BASE z/27

 ISPDPE Version: ISPDPE 04237-BASE z/27

 ISPDPL Version: ISPDPL 04243-BASE z/27

 ISPDPP Version: ISPDPP 04237-BASE z/27

 ISPDPR Version: ISPDPR 04237-BASE z/27

 ISPDPS Version: ISPDPS 04237-BASE z/27

 ISPDTD Version: ISPDTD 04237-BASE z/27

 ISPPQR Version: ISPPQR 04237-BASE z/27

 ISPDPTR0 Version: ISPDPTR0 04243-BASE z/27

==

TLD# Type Panel Section Cd RC Data

---- ---- -------- ------- -- --- -- ... -->

Figure 89. Sample Panel Trace header

Panel trace command (ISPDPTRC)

370 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

5. The options that are in effect for the current execution of the panel trace

6. Module level information for each of the modules associated with ISPF Panel

Processing

The remainder of the trace is broken into a number of columns to show each trace

record. The columns are:

TLD# The task or screen identifier from which the panel service is being invoked.

Type The trace entry type. The valid types are:

DspI Records are generated after a user has pressed the Enter key or a

function key, and show the data displayed on the ISPF panel at

that time. Attribute bytes are also included in the display. The

generation of this type of trace record is controlled by the

ISPDPTRC DISPLAY parameter.

DspO Records are generated displaying an ISPF panel at the screen.

Attribute bytes are also included in the display. The generation of

this type of trace record is controlled by the ISPDPTRC DISPLAY

parameter.

Err Records are generated when a ISPF panel processing error occurs

and ISPF issues an error message. The records generated include

both the short and long error messages.

PrcR Records are generated during the processing of the panel logic

sections, including)INIT,)REINIT,)PROC,)ABCINIT and

)ABCPROC. The data as displayed resembles that of the original

panel, but may not be identical to it. Where an assignment

statement includes dialog variables or functions, an additional

record is displayed showing the result of the assignment. The

generation of this type of trace records is controlled by the

ISPDPTRC SECTION parameter.

Read Records are generated reading a panel into storage. The generation

of this type of trace record is controlled by the ISPDPTRC READ

parameter. A summary trace does not show the panel source

records. The source of preprocessed panels can not be displayed.

RexR Records that are generated when REXX processing is complete and

control is being returned back to the panel.

Rexx Records that are generated when a *REXX statement is being

processed.

Svc Records are generated for calls to the ISPF Display Services and

show all the call parameters. This is limited to the DISPLAY,

TBDISPL, and TBQUERY services. The generation of this type of

trace record is control by the ISPDPTRC SERVICE parameter.

SvcR Records are generated returning from the ISPF Display services.

The trace includes the return code from the service.

Var Records that are generated to show the ISPF variables and their

values being passed to the Panel Exit or Panel REXX command.

VarR Records that are generated to show the ISPF variables and their

values being passed back from the Panel Exit or Panel REXX

command.

Panel The ISPF panel name associated with the trace record.

Panel trace command (ISPDPTRC)

Appendix C. Diagnostic Tools and Information 371

||
|

||
|

||
|

||
|
|

Section

The logic section associated with the PrcR type trace record.

Cd The Condition value returned for IF and ELSE panel statements:

T Indicates a True condition

F Indicates a False condition

Note: A plus (+) character in this field indicates a record continuation.

RC The Return Code, shown only for SvcR, and PrcR type trace records.

Data Trace data for the particular trace entry. The trace data extends the full

width of the output file and will wrap if required.

Panel display

Figure 90 on page 373 shows the output and input trace generated for panel

ISRUTIL. It includes a scale line across the top and down the side of the panel,

and includes panel size and cursor position information. The input trace also gives

an indication of the key or command entered.

Panel trace command (ISPDPTRC)

372 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Panel processing trace

Figure 91 on page 374 shows an example of the trace generated when processing

the PROC section of panel ISRUTIL after the number 4 was entered in the

command field. Statements skipped as the result of a “false” condition on an IF or

ELSE statement are never displayed. In addition, the panel trace always splits the

value pairs for the TRANS functions into separate records, making the trace more

readable. The result of an assignment statement is only shown when the

assignment statement includes a dialog variable, an including panel control

variable, or a panel function.

TLD1 DspO 0----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

TLD1 DspO ISRUTIL | Menu Help

TLD1 DspO ISRUTIL | --

TLD1 DspO ISRUTIL | Utility Selection Panel

TLD1 DspO ISRUTIL | Option ===>&

TLD1 DspO ISRUTIL +

TLD1 DspO ISRUTIL | 1 Library Compress or print data set. Print index listing. Print,

TLD1 DspO ISRUTIL | rename, delete, browse, edit or view members

TLD1 DspO ISRUTIL | 2 Data Set Allocate, rename, delete, catalog, uncatalog, or display

TLD1 DspO ISRUTIL | information of an entire data set

TLD1 DspO ISRUTIL 1 3 Move/Copy Move, or copy members or data sets

TLD1 DspO ISRUTIL | 4 Dslist Print or display (to process) list of data set names.

TLD1 DspO ISRUTIL | Print or display VTOC information

TLD1 DspO ISRUTIL | 5 Reset Reset statistics for members of ISPF library

TLD1 DspO ISRUTIL | 6 Hardcopy Initiate hardcopy output

TLD1 DspO ISRUTIL + 7 Transfer Download ISPF Client/Server or Transfer data set

TLD1 DspO ISRUTIL | 8 Outlist Display, delete, or print held job output

TLD1 DspO ISRUTIL | 9 Commands Create/change an application command table

TLD1 DspO ISRUTIL | 11 Format Format definition for formatted data Edit/Browse

TLD1 DspO ISRUTIL | 12 SuperC Compare data sets (Standard Dialog)

TLD1 DspO ISRUTIL 2 13 SuperCE Compare data sets Extended (Extended Dialog)

TLD1 DspO ISRUTIL | 14 Search-For Search data sets for strings of data (Standard Dialog)

TLD1 DspO ISRUTIL | 15 Search-ForE Search data sets for strings of data Extended (Extended Dialog)

TLD1 DspO ISRUTIL | 16 Tables ISPF Table Utility

TLD1 DspO ISRUTIL - ... --- Screen=23x80 Cursor=4/14

TLD1 DspI 0----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----

TLD1 DspI ISRUTIL | Menu Help

TLD1 DspI ISRUTIL | --

TLD1 DspI ISRUTIL | Utility Selection Panel

TLD1 DspI ISRUTIL | Option ===>&4

TLD1 DspI ISRUTIL +

TLD1 DspI ISRUTIL | 1 Library Compress or print data set. Print index listing. Print,

TLD1 DspI ISRUTIL | rename, delete, browse, edit or view members

TLD1 DspI ISRUTIL | 2 Data Set Allocate, rename, delete, catalog, uncatalog, or display

TLD1 DspI ISRUTIL | information of an entire data set

TLD1 DspI ISRUTIL 1 3 Move/Copy Move, or copy members or data sets

TLD1 DspI ISRUTIL | 4 Dslist Print or display (to process) list of data set names.

TLD1 DspI ISRUTIL | Print or display VTOC information

TLD1 DspI ISRUTIL | 5 Reset Reset statistics for members of ISPF library

TLD1 DspI ISRUTIL | 6 Hardcopy Initiate hardcopy output

TLD1 DspI ISRUTIL + 7 Transfer Download ISPF Client/Server or Transfer data set

TLD1 DspI ISRUTIL | 8 Outlist Display, delete, or print held job output

TLD1 DspI ISRUTIL | 9 Commands Create/change an application command table

TLD1 DspI ISRUTIL | 11 Format Format definition for formatted data Edit/Browse

TLD1 DspI ISRUTIL | 12 SuperC Compare data sets (Standard Dialog)

TLD1 DspI ISRUTIL 2 13 SuperCE Compare data sets Extended (Extended Dialog)

TLD1 DspI ISRUTIL | 14 Search-For Search data sets for strings of data (Standard Dialog)

TLD1 DspI ISRUTIL | 15 Search-ForE Search data sets for strings of data Extended (Extended Dialog)

TLD1 DspI ISRUTIL | 16 Tables ISPF Table Utility

TLD1 DspI ISRUTIL - ... --- Screen=23x80 Cursor=4/15 Key=ENTER

Figure 90. Sample DISPLAY trace

Panel trace command (ISPDPTRC)

Appendix C. Diagnostic Tools and Information 373

Panel REXX is not traced. This should be traced using normal REXX trace

capabilities.

File tailoring trace command (ISPFTTRC)

The ISPFTTRC command traces the processing of file tailoring services that are

invoked from any screen within the current ISPF session. You can trace both the

execution of file tailoring service calls (FTOPEN, FTINCL, FTCLOSE, and

FTERASE) and the processing that occurs within the file tailoring code and

processing of each statement.

The output from the trace is written to a dynamically allocated VB (variable

blocked) data set that has a record length of 255. Where the ddname ISPFTTRC is

preallocated, this data set will be used, providing it refers to a sequential, VB data

set with a record length of at least 255.

The ISPFTTRC command starts the trace if it is not running. If the trace is already

active, ISPFTTRC allows you to stop and optionally to view or edit the trace

output. ISPFTTRC must be executed while ISPF is active.

The syntax of the command is:

TLD1 PrcR ISRUTIL PROC 0 &ZCMDWRK=&Z

TLD1 PrcR ISRUTIL PROC -> &ZCMDWRK=’’

TLD1 PrcR ISRUTIL PROC T 0 IF(&ZCMD = &Z)

TLD1 PrcR ISRUTIL PROC 0 &ZCMDWRK=TRUNC(&ZCMD,’.’)

TLD1 PrcR ISRUTIL PROC -> &ZCMDWRK=4

TLD1 PrcR ISRUTIL PROC 0 &ZTRAIL=.TRAIL

TLD1 PrcR ISRUTIL PROC -> &ZTRAIL=’’

TLD1 PrcR ISRUTIL PROC F 0 IF(&ZCMDWRK = &Z)

TLD1 PrcR ISRUTIL PROC 0 &ZSEL=TRANS(TRUNC(&ZCMD,’.’)

TLD1 PrcR ISRUTIL PROC + 1,’PGM(ISRUDA) PARM(ISRUDA1) SCRNAME(LIBUTIL)’

TLD1 PrcR ISRUTIL PROC + 2,’PGM(ISRUDA) PARM(ISRUDA2) SCRNAME(DSUTIL)’

TLD1 PrcR ISRUTIL PROC + 3,’PGM(ISRUMC) SCRNAME(MCOPY)’

TLD1 PrcR ISRUTIL PROC + 4,’PGM(ISRUDL) PARM(ISRUDLP) SCRNAME(DSLIST)’

TLD1 PrcR ISRUTIL PROC + 5,’PGM(ISRURS) SCRNAME(RESET)’

TLD1 PrcR ISRUTIL PROC + 6,’PGM(ISRUHC) SCRNAME(HARDCOPY)’

TLD1 PrcR ISRUTIL PROC + 7,’PANEL(ISPUDL) SCRNAME(DOWNLOAD)’

TLD1 PrcR ISRUTIL PROC + 8,’PGM(ISRUOLP) SCRNAME(OUTLIST)’

TLD1 PrcR ISRUTIL PROC + 9,’PANEL(ISPUCMA) ADDPOP SCRNAME(CMDTABLE)’

TLD1 PrcR ISRUTIL PROC + 11,’PGM(ISRFMT) SCRNAME(FORMAT)’

TLD1 PrcR ISRUTIL PROC + 12,’PGM(ISRSSM) SCRNAME(SUPERC)’

TLD1 PrcR ISRUTIL PROC + 13,’PGM(ISRSEPRM) SCRNAME(SUPERCE) NOCHECK’

TLD1 PrcR ISRUTIL PROC + 14,’PGM(ISRSFM) SCRNAME(SRCHFOR)’

TLD1 PrcR ISRUTIL PROC + 15,’PGM(ISRSEPRM) PARM(S4) SCRNAME(SRCHFORE) NOCHECK’

TLD1 PrcR ISRUTIL PROC + 16,’PGM(ISRUTABL) NEWPOOL SCRNAME(TBLUTIL)’

TLD1 PrcR ISRUTIL PROC + ’ ’,’ ’

TLD1 PrcR ISRUTIL PROC + ’*’,’?’)

TLD1 PrcR ISRUTIL PROC -> &ZSEL=’PGM(ISRUDL) PARM(ISRUDLP) SCRNAME(DSLIST)’

Figure 91. Sample PROCESS trace

Panel trace command (ISPDPTRC)

374 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Where:

END Terminates the trace if it is active. No attempt is made to edit or view the

trace data set.

VIEW Terminates the trace if it is active and views the trace data set. If an

allocation for the DD ISPFTTRC is present, this data set is viewed.

SYSOUT data sets are not supported.

 When VIEW is unable to locate the trace data set, it performs the LIST

processing and displays the list of panel trace data sets.

LIST The file tailoring trace command invokes the Data Set List Utility to

display file tailoring trace data sets.

 Where the user’s prefix is not blank, the data set list displayed is for data

sets of the form:

prefix.**.ISPFT.TRACE

Otherwise, the data set list displayed is for data sets of the form:

userid.**.ISPFT.TRACE

QUIET

Prevents trace initialization and termination messages being displayed.

Error messages continue to be displayed on the screen.

READ Controls the generation of trace records when a skeleton member is being

read into memory.

None No trace records are produced during the read processing.

Summary

Generates summary information, including where the skeleton was

loaded from (either an ISPSLIB or LIBDEF data set), and the

number of records read.

Detail Generates the same information as for the summary trace, but

includes the skeleton source. This is the default setting.

RECORDS

Controls the generation of trace records during record processing of the

skeleton member.

* | All

Generates trace records for all skeleton record processing. Either

form of this parameter can only be specified by itself, and not with

any of the other RECORDS parameter values.

None Generates no trace records for any of the skeleton record

processing. This parameter can only be specified by itself and not

in conjunction with any of the other RECORDS parameter values.

ISPFTTRC [END]

 [VIEW]

 [LIST]

 [QUIET]

 [READ(None | Summary | Detail)]

 [REC|RECORDS(* | All | None | [Src|Source] [Data] [Cntl] |

 [NOSrc|NOSource] [NOData] [NOCntl])]

 [SCR|SCREEN(0 | * | screen_id)]

 [SVC|SERVICE(None | Detail)]

 [SKL|SKEL|SKELETON(* | skel_name | skel_mask)]

 [TBV|TBVARS(None | Detail)]

File tailoring trace command (ISPFTTRC)

Appendix C. Diagnostic Tools and Information 375

|

|
|

||
|

|
|

|

|

|

|

Source

Generates trace records for the source skeleton record. This is

performed before any processing is done to determine if it is a data

or control record.

Data Generates trace records for the data records. This is performed

after record processing has completed.

Cntl Generates trace records for the control statements. This is

performed after record processing has completed.

NOSource

Turns off the generation of trace records for the source skeleton

records.

NOData

Turns off the generation of trace records for the data records.

NOCntl

Turns off the generation of trace records for the control statements.

SCREEN

Controls the generation of trace records based on the screen ID.

0 Generate trace records for the all logical screens. This is the default.

* Generate trace records for the current screen ID.

screen_id

Generate trace records only for the logical screen ID as specified.

The screen ID is a single character in the range 1-9, A-W.

SERVICE

Controls the generation of trace records for the file tailoring service calls,

namely OPEN, FTINCL, FTCLOSE, and FTERASE.

None No trace records are produced during the service call processing.

Detail Generates trace records for the OPEN, FTINCL, FTCLOSE, and

FTERASE service calls, showing all the parameters. A trace record

is produced both before and after the call processing, with the post

record showing the return code from the service. This is the default

setting.

SKELETON

Controls the generation of trace records based on the skeleton name.

* | All Generate trace records for all skeletons. This is the default.

skel_name Generates trace records only for the skeleton name as

specified.

skel_mask Generates trace records for skeletons matching skel_mask.

The mask can contain % to represent a single character or *

to represent any number of characters.

Note: File tailoring service calls (OPEN, FTINCL, FTCLOSE, and

FTERASE) continue to be traced for all skeleton processing,

regardless of the skel_name or skel_mask parameter specified.

TBVARS

Used on a)DOT control word to display key variables and named

variables on each iteration through the table.

None No trace records are produced during)DOT processing.

File tailoring trace command (ISPFTTRC)

376 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Detail Generates trace records for the)DOT control word, displaying key

variables and named table variables on each iteration. Extension

variables are not displayed. This is the default setting.

Notes:

1. Where neither the END nor VIEW parameters are provided, the file tailoring

trace is started if it is not already active, otherwise the trace is stopped and

where possible you are put into an edit session with the trace output.

2. When the file tailoring trace is already active, only the END and VIEW

parameters have any effect on the command. All other valid parameters are

ignored. If invalid parameters are entered the command terminates without

starting to process the trace.

Trace format

File tailoring trace header

 The trace header shows the following information:

1. Current date and time (GMT) when the trace was initialized

2. ISPF level information as found in dialog variable ZISPFOS

3. z/OS level information as found in dialog variable ZOS390RL

4. ISPFTTRC command with the invocation parameters

5. The options that are in effect for the current execution of the file tailoring trace

6. Module level information for each of the modules associated with file tailoring

and skeleton processing

The remainder of the trace is broken into a number of columns to show each trace

record. The columns are:

TLD# The task or screen identifier from which the file tailoring is being invoked.

Type The trace entry type. The valid types are:

CtlR Records are generated when record processing has completed and

========= ISPF File Tailoring Trace =========== 2005.305 01:48:01 GMT ==========

 ZISPFOS: ISPF FOR z/OS 01.08.00 ZOS390RL: z/OS 01.05.00

 ISPFTTRC Command: ISPFTTRC

 Options in Effect: SKELETON(*) SCREEN(0) RECORDS(SOURCE CNTL DATA)

 READ(DETAIL) SERVICE(DETAIL) TBVARS(DETAIL)

 ISPFICRX Version: ISPFICRX 05286-BASE z/18

 ISPFICWC Version: ISPFICWC 05286-BASE z/18

 ISPFICWD Version: ISPFICWD 05286-BASE z/18

 ISPFICWE Version: ISPFICWE 05286-BASE z/18

 ISPFICWL Version: ISPFICWL 05286-BASE z/18

 ISPFICWT Version: ISPFICWT 05286-BASE z/18

 ISPFICWX Version: ISPFICWX 05286-BASE z/18

 ISPFIEND Version: ISPFIEND 05286-BASE z/18

 ISPFIINT Version: ISPFIINT 05286-BASE z/18

 ISPFILBS Version: ISPFILBS 05284-BASE z/18

 ISPFITLR Version: ISPFITLR 05284-BASE z/18

 ISPFITR0 Version: ISPFITR0 05297-BASE z/18

 ISPFITRV Version: ISPFITRV 05286-BASE z/18

==

TLD# Type Skeleton Rec# IM IF DO TB Cd RC Data

---- ---- -------- ------ -- -- -- -- -- -- ----------------------------- ... -->

Figure 92. Sample file tailoring trace header

File tailoring trace command (ISPFTTRC)

Appendix C. Diagnostic Tools and Information 377

the record was determined to be a control statement. The

generation of CtlR trace records is controlled by the ISPFTTRC

RECORDS parameter.

DatR Records are generated when record processing has completed and

the record was determined to be a data record. The generation of

DatR trace records is controlled by the ISPFTTRC RECORDS

parameter.

Err Records are generated when a file tailoring processing error occurs

and ISPF issues an error message. The generated records include

both the short and long error messages.

FncI Records are generated when a built-in function has been identified

and is ready to be evaluated.

FncR Records are generated when a built-in function has been evaluated.

NoFT Records are generated after the point where the NOFT parameter is

specified on the FTINCL service call, or the point where the NT

option is specified on the)IM control statement. The generation of

NoFT trace records is controlled by the ISPFTTRC RECORDS

parameter.

Read Records are generated reading a skeleton into storage. The

generation of Read trace records is controlled by the ISPFTTRC

READ parameter. A summary trace does not show the skeleton

source records.

RexR Records are generated when REXX processing is complete and

control is being returned back to the file tailoring.

Rexx Records are generated when a)REXX control statement is being

processed.

Src Records are generated when a skeleton record is selected for

processing. The generation of Src trace records is controlled by the

ISPFTTRC RECORDS parameter.

Svc Records are generated for calls to the ISPF file tailoring services

and show all the call parameters. This is limited to the FTOPEN,

FTINCL, FTCLOSE, and FTERASE services. The generation of Svc

trace records is controlled by the ISPFTTRC SERVICE parameter.

SvcR Records are generated returning from the ISPF file tailoring

services. The trace includes the return code from the service. The

FTCLOSE return trace entry includes an additional record showing

the number of records written to the file tailoring output data set.

Var Records that are generated to show the ISPF variables and their

values being passed to the file tailoring REXX command.

VarR Records that are generated to show the ISPF variables and their

values being passed back from the file tailoring REXX command.

Skeleton

The ISPF skeleton name associated with the trace record.

Record

Display the record number associated with the trace entry type. For Read,

Src, and CtlR the input record number from the skeleton member is

displayed. (For control statements that are continued over more than one

line this is always the record number associated with the first line of the

File tailoring trace command (ISPFTTRC)

378 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

||
|

||
|

||
|

control statement.) For DatR and NoFT, the output record number is

displayed. This field is blank for all other record types.

IM The current imbed level. The skeleton name specified on the FTINCL

service is always level 1.

IF The current IF or SEL level. This field is blank if no)IF or)SEL statement

is being processed.

DO The current DO level. This field is blank if no)DO structure is being

processed.

TB The current Table level. This field is blank if no)DOT structure is being

processed.

Cd The Condition value returned for the following skeleton control statements:

v)IF,)SEL,)UNTIL, or)WHILE statement

T Indicates a True condition

F Indicates a False condition
v)ENDDO, or)ENDDOT statement

X Indicates the corresponding)DO or)DOT control statement is

terminating. In other words, the exit condition has been met.
v)IM statement with OPT parameter

X Imbed member was not found. File tailoring processing will

continue.

Note: A plus (+) character in this field indicates a record continuation.

RC The Return Code, shown only for SvcR, DatR, and CtlR trace entries.

Data Trace data for the particular trace entry. The trace data extends the full

width of the output file and will wrap if required.

File tailoring trace command (ISPFTTRC)

Appendix C. Diagnostic Tools and Information 379

File tailoring processing trace

Diagnostic information

This section is intended to help you gather information to diagnose ISPF problems.

Using the ENVIRON system command

ISPF provides the ENVIRON command to assist you in gathering data that can be

helpful in diagnosing problems, thus reducing service time. The ISPF session does

not have to be running in any ISPF TEST/TRACE mode when you use the

ENVIRON command.

The ENVIRON command can help you to:

v Produce system abend dumps when not running in ISPF TEST mode

(ENBLDUMP parameter)

v Trace the TPUT, TGET, and PUTLINE buffers and obtain dump information for

TPUT and TGET errors (TERMTRAC parameter)

TLD# Type Skeleton Rec# IM IF DO TB Cd RC Data

---- ---- -------- ------ -- -- -- -- -- -- ----------------------------- ... -->

TLD1 Svc FTOPEN TEMP

--- DD=ISP14484 DSN=LSACKV1.SPFTEMP1.CNTL

TLD1 SvcR 0 FTOPEN TEMP

TLD1 Svc FTINCL SKREX1A EXT

--- DD=ISPSLIB DSN=LSACKV2.ISPSLIB

TLD1 Read SKREX1A 1 >>1A>>START>> REXX >>

TLD1 Read SKREX1A 2)SET VARLIST = &STR(VAR1 VAR2,VAR3)

TLD1 Read SKREX1A 3)SET VAR1 = SAY

TLD1 Read SKREX1A 4)SET VAR2 = HI

TLD1 Read SKREX1A 5)SET VAR3 = &STR(TO REXX)

TLD1 Read SKREX1A 6)SET VAR4 = &STR(:)

TLD1 Read SKREX1A 7)REXX &VARLIST VAR4

TLD1 Read SKREX1A 8 SAY VAR1 VAR2 VAR3 VAR4

TLD1 Read SKREX1A 9 VAR3 = ’from rexx to you’

TLD1 Read SKREX1A 10)ENDREXX

TLD1 Read SKREX1A 11 >>1A>>-END-<< &VAR1 &VAR2 &VAR3

TLD1 Read SKREX1A -------------------------- Total Records=11

TLD1 Src SKREX1A 1 1 >>1A>>START>> REXX >>

TLD1 DatR SKREX1A 1 1 0 >1A>START> REXX >

TLD1 Src SKREX1A 2 1)SET VARLIST = &STR(VAR1 VAR2,VAR3)

TLD1 FncI SKREX1A 2 1 &STR(VAR1 VAR2,VAR3)

TLD1 FncR SKREX1A 2 1 0 = VAR1 VAR2,VAR3

TLD1 FncR SKREX1A +000060 0000000B 00000003 800000...

 ...

TLD1 CtlR SKREX1A 10 1 0)ENDREXX

TLD1 RexR SKREX1A ZFTXRC(2)=0

TLD1 RexR SKREX1A ZFTXMSG(8)=

TLD1 RexR SKREX1A VAR1(3)=SAY

TLD1 RexR SKREX1A VAR2(2)=HI

TLD1 RexR SKREX1A VAR3(9)=from rexx

TLD1 RexR SKREX1A VAR4(1)=:

TLD1 Src SKREX1A 11 1 >>1A>>-END-<< &VAR1 &VAR2 &VAR3

TLD1 DatR SKREX1A 2 1 0 >1A>-END-< SAY HI from rexx

TLD1 SvcR 0 FTINCL SKREX1A EXT

TLD1 Svc FTCLOSE

--- DD=ISP09474 DSN=LSACKV1.SPFTEMP1.CNTL

TLD1 SvcR 0 FTCLOSE

TLD1 SvcR -------------------------- Total Records=2

Figure 93. Sample file tailoring process trace

File tailoring trace command (ISPFTTRC)

380 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

v Gather terminal status information (TERMSTAT parameter)

You can display a panel (Figure 94) for selecting command options by entering the

ENVIRON command with no parameters, or display the panel through the use of

the Environ settings... choice from the Environ pull-down on the ISPF Settings

panel. This panel includes the current values of the ENVIRON command

parameters (ENBLDUMP and TERMTRAC) and the ddname, if any, allocated for a

dump data set. The values can be changed by entering new values directly on the

panel.

 You can issue the ENVIRON command at any time during an ISPF session.

ENVIRON command syntax and parameter descriptions

The general syntax for the ENVIRON command is:

 The parameter descriptions for the ENVIRON command are as follows:

ENBLDUMP

Specifying the ENBLDUMP parameter enables ISPF to produce an abend

dump if a subtask abnormally terminates when ISPF is not running in TEST

mode. The ENBLDUMP parameter does not apply to attached commands.

Before a dump is taken you must allocate either the SYSUDUMP, SYSMDUMP,

or SYSABEND ddname. For more information about these data sets, refer to

z/OS MVS Diagnosis: Tools and Service Aids.

Log/List Function keys Colors Environ Temporary Help
- ISPF Settings --

ISPF ENVIRON Command Settings
+

S Enter "/" to select option
_ Enable a dump for a subtask abend when not in ISPF TEST mode

Terminal Tracing (TERMTRAC)
Enable . . . _ 1. Enable terminal tracing (ON)

2. Enable terminal tracing when a terminal error
is encountered (ERROR)

3. Disable terminal tracing (OFF)
DDNAME . . . ISPSNAP (DDNAME for TERMTRAC ON, ERROR, or DUMP.)

T Terminal Status (TERMSTAT)
Enable . . . _ 1. Yes, invoke TERMSTAT immediately

2. Query terminal information
3. No

Command ===> __
F1=Help F2=Split F3=Exit F7=Backward F8=Forward
F9=Swap F12=Cancel

C __
F1=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap
F10=Actions F12=Cancel

Figure 94. ENVIRON Settings Panel (ISPENVA)

ENVIRON [ENBLDUMP [ON|OFF]]

 [TERMTRAC [ON|ERROR|DUMP|OFF]]

 [TERMSTAT [QUERY]]

Diagnostic information

Appendix C. Diagnostic Tools and Information 381

The default value for the ENBLDUMP parameter is ON. ENVIRON

ENBLDUMP ON specifies to ISPF that a dump is to be generated for the

subtask that abended.

 Issuing ENVIRON ENBLDUMP OFF cancels the effect of the ON status.

 The ENBLDUMP parameter value is preserved across ISPF sessions in the

ISPSPROF profile.

 With ENBLDUMP active, even when ISPF is not running in TEST mode,

abnormal termination of a subtask results in a dump being taken and control

being returned to TSO. ISPF execution is not resumed.

 When running in ISPF TEST mode, issuing ENVIRON ENBLDUMP has no

effect on dump processing.

TERMTRAC

Specifying the TERMTRAC parameter allows you to trace all terminal input

and output data (TPUT, TGET, PUTLINE) during an ISPF session. The

TERMTRAC parameter also allows you to turn on in-core tracing and cause

ISPF to produce a SNAP dump if the TPUT or TGET service results in an error.

ISPF does not have to be running in TSO TEST mode.

Note: The ENVIRON TERMTRAC buffer does not include:

v The TPUT/TGET instructions issued to query the terminal:

– At ISPF initialization

– By the ENVIRON TERMSTAT command
v The TPUT instruction issued to clear the screen at ISPF termination

v Under certain severe ISPF error conditions, the TPUT instruction

issued to display a severe error line message

Before issuing the ENVIRON TERMTRAC DUMP command you must have

first issued the ENVIRON TERMTRAC ON or ENVIRON TERMTRAC ERROR

command.

Before using the TERMTRAC option, you must define to ISPF the ddname for

the data set to be used for the SNAP macro, which ISPF invokes to provide

data stream dumps. The ddname can be defined by specifying it on the panel

displayed as a result of either issuing the ENVIRON command with no

parameters, or selecting the “Environ settings” choice from the Environ

pull-down on the ISPF Settings panel. You must follow the data set

characteristics guidelines defined by MVS for the SNAP macro. See z/OS MVS

Programming: Assembler Services Guide for DCB information that can be

specified for the SNAP ddname.

 The terminal data stream buffer used for ENVIRON TERMTRAC data

collection is not reset to zeros.

 Subparameters define terminal data tracing as follows:

v ENVIRON TERMTRAC ON

Activates TPUT, TGET, and PUTLINE buffer tracing of the terminal data

stream. All data is retained in a 24K buffer provided by ISPF. No buffer

entry is fragmented. If an entry will not fit into the remaining buffer space,

ISPF issues a SNAP to capture the buffer data. The next trace entry is stored

at the top of the buffer, regardless of the status of the SNAP execution.

Messages are displayed to the user only for errors during SNAP execution.

No messages are displayed during dumps taken as a result of the data

buffer filling.

Diagnostic information

382 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Because ENVIRON TERMTRAC ON causes a SNAP dump to be taken each

time the buffer fills, the ddname that you allocate for the SNAP macro

should have a disposition of MOD. This assures that no trace data is lost.

The layout of the terminal data buffer for all SNAP dumps is:

1 TPUT/TGET/PUTLINE BUFFER TRACE

 2 Header of 8 bytes initialized to

 TERMTRAC

 2 4-byte pointer to where the next entry

 is to be placed

 2 Reserved (20 bytes, for 32-byte boundary

 alignment)

 2 TPUT/TGET/PUTLINE DATA (*)

 3 8-byte TPUT/TGET/PUTLINE identifier

 3 4-byte pointer to previous entry

 3 Information specific to the terminal

 type identifier.

The TPUT/TGET identifiers and specific information for each is as follows.

Each buffer entry is aligned on a 32-byte boundary.

TGET Before issuing TGET SVC. 4-byte pointer to previous entry.

General purpose registers 0, 1, and 15:

 R0 = input data area size

 R1 = input data area pointer

 R15 = TGET option byte

TGETR Return from TGET SVC. 4-byte pointer to previous entry.

General purpose registers 1 and 15:

 R1 = input data length

 R15 = TGET return code

4-byte length of data stream.

Data stream.

TPUT Before issuing edit TPUT macro. 4-byte pointer to previous

entry. General purpose registers 0, 1, and 15:

 R0 = output data area

 R1 = output data area pointer

 R15 = TPUT option byte

4-byte length of data stream.

Data stream.

TPUTR Return from edit TPUT macro. 4-byte pointer to previous

entry. General purpose register 15:

 R15 = TPUT return code

TPUTNE before issuing the noedit TPUT macro. 4-byte pointer to

previous entry. General purpose registers 0, 1, and 15:

 R1 = address of plist

 R15 = TPUT option byte

16-byte noedit plist:

 Reserved (2 bytes)

 2-byte length of data stream

 Code (1 byte)

 3-byte addr of data stream

 Reserved (8 bytes)

Data stream.

TPUTNER Return from noedit TPUT macro. 4-byte pointer to previous

entry. General purpose register 15:

Diagnostic information

Appendix C. Diagnostic Tools and Information 383

R15 = TPUT return code

PUTLINE Before issuing the PUTLINE macro. 4-byte pointer to

previous entry 12-byte PUTLINE parameter block:

 Control flags (2 bytes)

 2-byte TPUT options field

 4-byte address of message

 4-byte address of format-only line

125-byte message description:

 2-byte message length

 2-byte message offset

 121-byte message

Actions that occur as a result of issuing the ENVIRON TERMTRAC

command when ENVIRON TERMTRAC ON is already in effect are listed by

command subparameter below:

ON ENVIRON TERMTRAC ON continues to function normally.

OFF Tracing is turned off and ISPF issues a SNAP macro. If

ENVIRON TERMTRAC tracing is requested again, the next

entry is written at the top of the buffer, regardless of

whether the prior SNAP was successful.

ERROR Changes the setting of the command to ENVIRON

TERMTRAC ERROR. Tracing continues, with the next buffer

entry being written after the last entry written by the

ENVIRON TERMTRAC ON setting.

DUMP The ENVIRON TERMTRAC ON condition continues. In

addition, ISPF issues a SNAP macro and, if the SNAP is

successful, the next trace entry is written at the top of the

buffer. If the SNAP fails, the next entry is written after the

last entry before the SNAP.
v ENVIRON TERMTRAC ERROR

Initiates tracing of the TPUT, TGET, and PUTLINE buffers. In addition, it

causes ISPF to initiate a SNAP dump if a TPUT or TGET error occurs. The

dump includes the storage trace buffer, the current TCB, all system control

program information, and all problem program information. The SNAP

macro definition provides more specific information about the areas dumped

when all system control program and problem program information is

requested.

ISPF issues the SNAP macro on the first occurrence of a TPUT failure. ISPF

makes three consecutive attempts to correct a TPUT error.

Before using this option, you must have defined the ddname for the SNAP

macro as described earlier in this topic under TERMTRAC.

Actions that occur as a result of issuing the ENVIRON TERMTRAC

command when ENVIRON TERMTRAC ERROR is already in effect are

listed by command subparameter below:

ON Changes the setting of the command to ENVIRON

TERMTRAC ON. Tracing continues, with the next buffer

entry being written after the last entry written by the

ENVIRON TERMTRAC ON setting.

ERROR ENVIRON TERMTRAC ERROR continues to function

normally, with the next trace entry written after the last

ERROR trace entry.

Diagnostic information

384 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

OFF The setting for ENVIRON TERMTRAC is set to OFF. If

ENVIRON TERMTRAC tracing is requested again, the next

entry is written at the top of the buffer, regardless of

whether the prior SNAP was successful.

DUMP The ENVIRON TERMTRAC ERROR condition continues. In

addition, ISPF issues a SNAP macro and, if the SNAP is

successful, the next trace entry is written at the top of the

buffer. If the SNAP fails, the next entry is written after the

last entry before the SNAP.
v ENVIRON TERMTRAC DUMP

Causes ISPF to immediately issue a SNAP macro, but only if ENVIRON

TERMTRAC ON or ENVIRON TERMTRAC ERROR is active. The resulting

dump includes the storage trace buffer, the current TCB, all system control

program information, and all problem program information. The SNAP

macro definition provides more specific information about the areas dumped

when all system control program and problem program information is

requested.

Notes:

1. This command execution does not turn off terminal data stream tracing if

it is active at the time.

2. The next entry is written to the top of the terminal data buffer if the

SNAP was successful; otherwise, tracing continues immediately after the

last trace buffer entry.
v ENVIRON TERMTRAC OFF

Resets active ENVIRON TERMTRAC ON and ENVIRON TERMTRAC

ERROR commands. If ENVIRON TERMTRAC is active, ISPF issues a SNAP

macro.

The TERMTRAC parameter value is preserved across ISPF sessions in the

ISPSPROF profile. The ddname specified for TERMTRAC on the ENVIRON

option panel is also saved across sessions.

TERMSTAT

Specifying the TERMSTAT option of the ENVIRON command allows you to

collect information about the characteristics of the terminal you are using and

the line to which it is attached. The information is returned to your terminal by

using line mode, and is written to the ISPF log data set.

 The description below of the information returned from an ENVIRON

TERMSTAT request is divided into three parts:

v A list of terminal characteristics as defined in ISPF variables. In other words,

this list defines what ISPF thinks your terminal characteristics are.

v A list of terminal characteristics as defined within TSO.

v A list of structured fields that apply only to terminals with extended data

stream (EDS) capability.

If you issue ENVIRON TERMSTAT (without the QUERY parameter) ISPF

unconditionally returns information from lists A and B (below). In addition, if

your terminal is connected to a port that supports extended data streams, ISPF

returns information from list C (below).

 If your terminal is one that supports extended data streams, such as an IBM

3279, but is connected to a non-EDS port, you can issue ENVIRON TERMSTAT

QUERY to force ISPF to return information from list C. Be aware that if you

Diagnostic information

Appendix C. Diagnostic Tools and Information 385

issue ENVIRON TERMSTAT QUERY, and your terminal is not a type that

supports extended data streams, such as the IBM 3277, you will receive an

ORDER STREAM CHECK error.

 Information returned as a result of issuing the ENVIRON TERMSTAT

command is as follows:

 List A – Terminal Characteristics as Defined Within ISPF

 14-bit terminal addressing mode (ON or OFF)

 16-bit terminal addressing mode (ON or OFF)

 Color mode (ON or OFF)

 Highlighting mode (ON or OFF)

 DBCS mode (ON or OFF)

 Primary screen size (length, width, total bytes)

 Alternate screen size (length, width, total bytes)

 Partition screen size (length, width, total bytes)

 ISPF terminal buffer data (TSB ptr., TSB size,

 TPP addr.)

List B – Terminal Characteristics as Defined Within TSO

 Return code from GTTERM

 Primary screen information (rows, columns)

 Alternate screen information (rows, columns)

 Screen attribute value

 Character set (ASCII or EBCDIC)

 Extended data streams or non-EDS support

 Return code from GTSIZE

 GTSIZE information (rows, columns)

 Access method being used (VTAM* or TCAM)

List C – Terminals Supporting EDS (structured fields)

 Usable areas

 Partitions

 Character sets

 Color

 Highlighting

 Reply modes

 PC 3270

 Implicit partition

 Input control

 Field rule

v ENVIRON TERMSTAT QUERY

The QUERY parameter allows you to request terminal data related to

extended data stream capability, even though your terminal is connected to a

port that does not support extended data streams.

Abend panels provide diagnostic information

When ISPF processing ends abnormally, diagnostic panels are available for

displaying:

v Task abend code

v Reason code

v Module name

v Entry point address

v Program-Status Word (PSW)

v Register content at the time of the abend

This information is used in logged abend messages. A tutorial panel displays a list

of the common abend codes.

Diagnostic information

386 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

On abnormal ISPF termination, the Error Recovery panel shown in Figure 95

indicates the abend code and reason code.

 If the SDWA (System Diagnostic Work Area) Reason Code is not supplied, that is,

the SDWA reason code flag bit is OFF, the Reason Code panel field will be blank. If

the abend code documentation indicates that the reason code is in a particular

register, see the contents of that register, which can be displayed on the Additional

Diagnostic Information panel as shown in Figure 96 on page 388.

If you enter HELP, ISPF displays a list of the common abend codes. To return to

the Error Recovery panel, enter END from the Common ABEND panel.

If you press Enter from the Error Recovery panel, the Additional Diagnostic

Information panel is displayed. Figure 96 on page 388 shows sample data where

the SDWA extension is installed. The format for the register content is slightly

different if the SDWA extension is not present.

 Error Recovery

 Command ===>

 *

 *

 * * ISPF processor ended abnormally * *

 * * * *

 * * System abend code 0C1 * *

 * * Reason code 01 * *

 * * * *

 * * * *

 * * * *

 * * Note: The ABEND and REASON codes displayed above are * *

 * * HEXADECIMAL values for "SYSTEM" abends and DECIMAL * *

 * * values for "USER" abends. * *

 * * * *

 * * Enter HELP command for list of common ABEND codes. * *

 * * Press ENTER key for additional DIAGNOSTIC information. * *

 * * Enter END command to display primary option menu. * *

 * * * *

 *

 *

Figure 95. Error Recovery Panel (ISPPRS1)

Diagnostic information

Appendix C. Diagnostic Tools and Information 387

Entry point, PSW, and register values are in hexadecimal. Abend code and reason

code are in hexadecimal for system abends and in decimal for user abends.

Meanings for the entries on the Additional Diagnostic Information panel are:

Abend code

Abend completion code, identified on the panel as “user” or “system”.

Reason code

Component reason code or return code associated with the abend.

ISPF Release Level

ISPF version/release/modification level.

Module Name

Name of abending program or *NOT SPECIFIED* if no name is available.

Entry Point Address

Entry point address of abending program.

PSW Program-Status Word at time of error.

Register content

General Purpose register content at time of error.

If the Recovery Termination Manager (RTM) could not get storage for the System

Diagnostic Work Area (SDWA) or an error occurred within the error routine, all

fields on this panel will contain 0’s, with the exception of the abend code and ISPF

release level. Those fields will contain the correct data.

You can enter the HELP command from this panel as well to display the list of

common abend codes. Information associated with an abend is available from the

ISPF log file.

Press the END function key to return to the primary option menu.

 Additional Diagnostic Information

 Command ===>

 More: +

 System abend code = 0C1

 Reason code = 01

 ISPF Release Level : 5.7.0000

 Module name . . . : ASMTEST

 Entry point address 0000D488

 PSW : 078D1000 0000D4BC

 Register content:

 R0 00000000 - 16308E22 R1 00000000 - 00048EA4

 R2 00000000 - 0000D4D0 R3 00000000 - 00048AC0

 R4 00000000 - 00048AAC R5 00000000 - FFFFFFFF

 R6 00000000 - 00000000 R7 00000000 - 00000001

 R8 00000000 - 00000000 R9 00000000 - 00039060

 R10 00000000 - 00048AA8 R11 00000000 - 00000000

 R12 00000000 - 0000D488 R13 00000000 - 0000D4D0

 R14 00000000 - 80FCC860 R15 00000000 - 0000D488

Figure 96. Additional Diagnostic Information panel (ISPPRS3)

Diagnostic information

388 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

ISPF statistics entry in a PDS directory

The following is the format of the information that ISPF writes to the PDS

directory to maintain statistics for a member. If you suspect the statistics data has

been corrupted, you can compare the existing entry against these formats to help

in problem determination.

Byte Description and Format

1 Version number, in hexadecimal format. Value is between X'01' and X'99'.

2 Modification level, in hexadecimal format. Value is between X'00' and X'99'.

3 Flags:

Bit 1 SCLM indicator. SCLM uses this to determine whether the

member and any related SCLM information are still in

sync.

v ON means the member was last edited by SCLM, the

Software Configuration and Library Manager.

v OFF means the member was somehow processed outside

SCLM.

Bit 2-7 Reserved for future ISPF use.

Bit 8 Reserved.

4 The seconds portion of the time last modified, in packed decimal format.

5-8 Creation date:

Byte 5 Century indicator. X'00' = 1900. X'01' = 2000.

Byte 6-8 Julian date, in packed decimal format

9-12 Date last modified:

Byte 9 Century indicator. X'00' = 1900. X'01' = 2000.

Byte 10-12 Julian date, in packed decimal format

13-14 Time last modified, in packed format:

Byte 13 Hours, in packed decimal format

Byte 14 Minutes, in packed decimal format

15-16 Current number of lines, in hexadecimal format

17-18 Initial number of lines, in hexadecimal format

19-20 Number of modified lines, in hexadecimal format

21-27 Userid, in character format

28-30 Reserved for future ISPF use

Common problems using ISPF

This section contains some common error messages that may be encountered while

using ISPF. Error resolutions and explanations are also included.

Messages

v IKJ56500I COMMAND NOT FOUND

Diagnostic information

Appendix C. Diagnostic Tools and Information 389

If a command processor exists only in LPA, there must be an entry in the

ISPTCM for the command processor. See z/OS ISPF Planning and Customizing for

more details on customizing the ISPF TSO command table.

v IKJ56861I FILE ddname NOT FREED, DATA SET IS OPEN

If the LIBRARY parameter is used with a table service, the user is not able to

free the ddname for the table library pointed to by the LIBRARY parameter. ISPF

keeps this library open until a new ddname is used in the LIBRARY parameter

with another table service. ISPF functions in this manner for performance

reasons.

Issuing a table service with a LIBRARY parameter containing a ddname that

does not exist causes the previous library to be closed and therefore allows the

user to free the previous ddname. Use of CONTROL ERRORS RETURN may be

used to guard against a severe error as a result of a ddname not existing.

For example:

 ALLOC FILE(DD1) DATASET(’USERID.YOUR.TABLES’) SHR

 ISPEXEC TBOPEN MYLIB LIBRARY(DD1)

 .

 . /*ISPF services against your table*/

 .

 ISPEXEC TBCLOSE MYLIB LIBRARY(DD1)

 ISPEXEC CONTROL ERRORS RETURN

 ISPEXEC TBOPEN JUNK LIBRARY(DDJUNK) /*nonexistent table in a */

 /*nonexistent library */

 ISPEXEC CONTROL ERRORS CANCEL

 FREE F(DD1)

v ISPP150 Panel ’name’ error–At least one of the CLEAR names listed is not a

panel field name.

or:

ISPP121 Panel ’name’ error–Panel definition too large, greater than screen size.

when entering KEYLIST, when requesting field-level help in ISPF panels, or

when displaying panels created using DTL.

These messages are often caused by having a GML library in the ISPPLIB

concatenation or by having GML source code in the panel library. Check your

ISPPLIB concatenation to make sure that the ISPF-supplied GML library is not

concatenated first. The ISPF-supplied GML library should not be in any of the

ISPF library concatenations. Make sure that the libraries in your ISPPLIB

concatenation do not contain GML source code.

v ISPT036 Table in use–’table service’ issued for table ’table name’ that is in use,

ENQUEUE failed.

This message frequently occurs when batch jobs that use ISPF services run

concurrently. This occurs because most batch jobs allocate a new profile each

time they run. ISPF issues a TBOPEN against ISPPROF DD card for member

ISPSPROF. The TBOPEN fails since ISPPROF does not contain this member. ISPF

then issues a TBOPEN against ISPTLIB to copy the default ISPSPROF from

ISPTLIB to ISPPROF.

If the first data set in the ISPTLIB concatenation sequence is the same for two

batch jobs running concurrently, message ISPT036 is issued. To ensure that this

condition does not occur, the first data set in the ISPTLIB concatenation should

be user unique. For example, ’sysuid..ISPPROF’ would be a user unique data set,

which could be used as the first data set concatenated to the ISPTLIB DD.

For the same reasons, this problem can also occur when two users log on to

ISPF for the first time if they have the same data set concatenated first in the

ISPTLIB concatenation.

v ISPT016, ISPT017, and other I/O Errors

Common problems using ISPF

390 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

ISPF has various messages that reference I/O errors on either GET or PUT

(READ and WRITE macros) such as message ISPT017. These errors are typically

caused by concatenation problems on one of the ISPF libraries.

Allocating data sets that do not have consistent DCB parameters in ISPF library

concatenations often causes these messages. Also, ISPTABL, ISPFILE, and

ISPPROF are used for output and therefore must have only a single data set

allocated to their ddnames.

– For I/O errors during panel services, check your ISPPLIB concatenation for

inconsistent DCBs.

– For I/O errors during file tailoring services, check your ISPSLIB concatenation

for inconsistent DCBs and make sure that only one data set is allocated to

ddname ISPFILE.

– For I/O errors during table services, check your ISPTLIB concatenation for

inconsistent DCBs and make sure that only one data set is allocated to

ddname ISPTABL.

I/O error messages cannot be issued when there is a problem with the ISPMLIB

concatenation since messages cannot be located due to the I/O error. Message

CMG999 occurs when there is an I/O error due to an ISPMLIB concatenation

problem.

v CMG999

CMG999 is issued with an appropriate description of the error condition for any

problem with accessing a message. See z/OS ISPF Dialog Developer’s Guide and

Reference for further information on how to define a message.

Unexpected output

v ISPF services do not pick up updated copies of messages or panels.

When not in TEST mode, the most recently accessed panel and message

definitions are retained in virtual storage for performance reasons. If you have

modified a panel or message file, using TEST mode ensures that the latest copy

of each message or panel is accessed. See z/OS ISPF Services Guide for more

information on executing ISPF in TEST mode.

v ISPF commands such as WINDOW, COLOR, CUAATTR, EXIT, CANCEL,

ACTIONS, KEYSHELP, KEYLIST, EXHELP, FKA, and ISPDTLC are not

recognized as valid commands, or function keys defined as these commands do

not function properly.

The user issuing these commands or pressing the function keys defined as these

commands has a private copy of ISPCMDS in the ISPTLIB concatenation. The

user’s private copy of ISPCMDS is missing some or all of the new commands

supplied in the new command table, ISPCMDS.

Users experiencing this problem should either replace their private copy of

ISPCMDS with the ISPF-supplied copy, or update their private ISPCMDS with

the missing commands.

Abend codes and information

ISPF controller and processor task abends are controlled by STAE and STAI exit

routines and by ISPF execution modes set using the ISPSTART TEST parameters.

Under normal conditions (that is, when processor and controller dumps have not

been requested by specifying the ISPSTART TEST command):

v When a processor task abends:

– No dump is taken.

Common problems using ISPF

Appendix C. Diagnostic Tools and Information 391

– The controller reattaches the processor main drive (ISPPMD).

– The primary option menu is redisplayed for that logical screen.
v When the controller task abends:

– ISPF terminates with *** ISPF MAIN TASK ABEND *** message.

– Control returns to TSO.

– Pressing Enter causes a dump to be taken if a dump data set has been

allocated.

The controller and processor tasks issue the ABEND system service and allow

dumps under certain situations. The ISPF modules that issue ABENDs and their

associated codes and reasons are listed below:

Abend code 0C1 in various common ISPF subroutines

In several ISPF modules, an invalid operation code of (X’00’) is executed to

force an abend at the point that an unexpected condition occurs. Contact

IBM support if this condition occurs within an ISPF module.

Abend code 0C4 in ISPDVCGT, ISPDVCPT, or ISPDVCFD

These abends are often caused by mismatched VDEFINE and VDELETE

services in a user’s program. The VDEFINE service gives ISPF

addressability to user storage. This storage is used by variable services any

time the variable that has been established by the VDEFINE service is

referenced. If this storage is released back to the system, an 0C4 abend may

occur depending on whether the storage is still accessible. Following are

two common scenarios that often show these abends:

v A program establishes a variable in a called subroutine using the

VDEFINE service and subsequently uses an ISPF service that references

this variable in another routine. If the called subroutine was dynamically

loaded and therefore released its storage, an 0C4 abend could occur

when the subroutine references a VDEFINEd variable.

v A program establishes a variable in a called subroutine using the

VDEFINE service and then calls another program without using the

SELECT service. Then the called program VDEFINEs a variable with the

same name, but does not VDELETE it on exit. If the calling program

references that variable after the called program returns control to it, an

0C4 abend can occur. Since a VDELETE has not been done, ISPF services

still reference the variable VDEFINEd by the called program.

If the program intent is to use the same variable in the main and called

routines, the variable should be VDEFINEd only in the main routine. If the

program intent to isolate a variable to be used only in the routine in which

it is VDEFINEd, then the program should also VDELETE the variable

before it ends. To diagnose whether the user application has this problem,

a function trace on VDEFINE, VDELETE, and the SELECT services (Option

7.7.1) is very helpful.

Abend codes 111 or 222

To produce these abends, the user must be in test mode and request

processor dumps by entering one of the following commands on the ISPF

command line. With exception of the user completion code, both

commands function in the same manner.

ABEND Terminates ISPF with user completion code 111.

CRASH Terminates ISPF with user completion code 222.

Abend code 908

ZISPFRC value was not valid

Abend codes and information

392 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Abend code 920

ISPSTART command syntax was not valid

Abend code 985

An attempt was made to start a GUI in batch mode, but no workstation

connection was made.

Abend code 987

An attempt was made to start GUI with GUISCRW or GUISCRD and the

GUI initialization failed.

Abend code 988

Invalid TSO environment. See z/OS ISPF Planning and Customizing for the

proper TSO version.

Abend code 989

The ISPF C/S component window was closed while still running ISPF in

GUI mode

Abend code 990

An error occurred running in batch mode. If ZISPFRC has not been set

previously, and ISPF encounters a severe error that terminates the product,

then 990 is set.

Abend code 995

Configuration table is not compatible with current ISPF release.

Configuration table must be release 4.8 or later.

Abend code 996 (or X’3E5’)

ISPF was not able to load the terminal translate table during initialization.

Check that the load module defined in the configuration table is available

in the ISPLLIB or MVS load library search concatenation. The value is

stored in the user’s profile data set, so a reset may be required to load the

correct value.

Abend code 997 (or X’3E5’)

A TPUT returned a return code other than 0 or 8. A message is displayed

and an attempt is made to redisplay the full screen. If the redisplay fails

twice, this abend is issued.

Abend code 998 (or X’3E6’)

An ISPF severe error that occurs while not in CONTROL ERRORS

RETURN mode and before ISPF is fully initialized. ISPF is considered to be

fully initialized when the Enter key on the primary option menu has been

processed without a severe error occurring.

Abend code 999 (or X’3E7’)

This abend is issued for the following reasons:

v No function pool is established for a command processor.

For example, a command processor that uses ISPF services is invoked

using option 6 or SELECT CMD, but the command processor does not

have a function pool. The user needs to have an entry for the command

processor in the ISPTCM with the X’40’ flag set on. The X’40’ flag

indicates that the command requires a function pool. See z/OS ISPF

Planning and Customizing for more information on customizing the

ISPTCM.

v An error occurs while another error is already being processed.

ISPF issues the abend code 999 in this case to protect against an infinite

loop.

v An error occurred during ISPF initialization.

Abend codes and information

Appendix C. Diagnostic Tools and Information 393

For example:

– An I/O error occurred due to ISPF library allocations such as

ISPSLIB, ISPPLIB, ISPMLIB, and so forth, containing inconsistent or

incorrect DCB attributes.

– An ISPF library allocation does not contain the required ISPF libraries

in its concatenation. For example, the ISPMLIB contains user product

libraries but not ISPF libraries.

Terminal I/O error codes

Below is a list of terminal I/O error codes that you may see while using ISPF.

v ISPF screen output error code

41 TPUT return code not equal to 0 or 8
v ISPF screen input error code

21 TGET return code other than 0, 4, or 8.

22 Input stream size greater than input buffer size or 0.

23 Unknown attention identifier (AID).

24 Invalid input AID.

25 Input stream size invalid for input AID.

26 Input cursor location not within physical screen.

28 First byte of input buffer field not an SBA (invalid input data).

31 Byte preceding the physical screen field is past the end of the physical

screen (input data from invalid screen position).

32 Byte preceding the physical screen field is not an input attribute (input

data from invalid screen position).

33 Physical screen field not defined on panel (input data from invalid

screen position).

51 Physical screen field attribute not found in logical screen.

52 Byte preceding logical screen field is not an input attribute.

55 Physical screen size is greater than corresponding logical screen size.

Notes:

1. The physical screen size is determined by ISPF during initialization.

2. The input buffer size is a variable based on the physical screen size.

3. The logical screen is the same size as the physical screen, and is the size that

the processor task uses for screen I/O. When the 3290 is running in 62 X 160

partition mode, the SPLITV command makes the logical screen width equal to

80. When a 3278 mod 5 is running in standard mode, the logical screen size is

24 X 80.

4. Only part of the logical screen appears on the physical screen when ISPF is

running in split-screen mode. When the 3290 is running in 62 X 160 partition

mode, the entire logical screen may be visible, depending on the position of the

horizontal split line.

5. An input buffer field extends from an SBA to either the next SBA or the end of

the input buffer.

6. A physical screen field extends from the location indicated in the input buffer

SBA to the location of the next attribute byte in the physical screen.

Abend codes and information

394 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Register linkage conventions

ISPF uses standard linkage conventions:

v SELECT PGM(program-name)

REGISTER CONTENTS

1 Points to the address of the parameter data (from the PARM

keyword) field (half-word length) followed by the data

2 - 12 Not used

13 72-byte save area

14 Return address

15 Entry address / Return code on exit
v ISPF EXITS / Call to ISPLINK

REGISTER CONTENTS

1 On entry, points to a parameter list; each address in the list in

turn points to a parameter. On return to the caller of ISPLINK,

the user’s parameter list starts at the second parameter. ISPF has

inserted a parameter in front of the user’s parameters for ISPF

use.

2 - 12 Not used

13 72-byte save area

14 Return address

15 Entry address / Return code on exit
v SELECT CMD(cmdname) where cmdname is a program that will be attached as

a command processor by ISPF:

REGISTER CONTENTS

1 Points to a CPPL (Command Processor Parameter List) which is

a list of four addresses that point respectively to: Command

buffer, UPT, PSCB, ECT. See the TSO programming services

manual for descriptions of these parameters.

2 - 12 Not used

13 72-byte save area

14 Not applicable

15 Return code on exit

Usually when an abend occurs within ISPF code, register 12 points to the entry

point of the abending CSECT.

Obtaining message IDs

In order to obtain the message ID associated with an error message in ISPF, you

need to be in ISPF TEST mode.

ISPF is in TEST mode if:

v ISPF is invoked with the TEST, TESTX, TRACE, or TRACEX parameter specified

on the ISPSTART, PDF, or ISPF command, or

Register linkage conventions

Appendix C. Diagnostic Tools and Information 395

v “Restore TEST/TRACE options” is not selected in option 0 and you go into

option 7, Dialog Test, at some point in your current ISPF session.

If you are not in TEST mode, split the screen, enter option 7, Dialog Test, and swap

back to the screen containing the error.

You can use the either of the following methods to get the message ID:

v Enter print on the panel displaying the error message. The message ID, along

with the displayed message text and screen output, appears in the LIST data set.

The LIST data set can be printed using the LIST command.

v With the short message displayed:

1. Press the function key assigned to Help (default is F1) or type help on the

command line. This displays the long message text for the error.

2. Press the function key assigned to Help or type help on the command line

once more to display the Tutorial panel associated with the error. The bottom

lines of the Tutorial panel contain fields that list the current panel name, the

previous panel name, and the message ID. The value following LAST MSG= is

the message ID associated with the error.

Obtaining message IDs

396 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Appendix D. Dialog variables

This topic describes the ISPF dialog variables.

The following table lists the dialog function pool variables that are both read from

and written to by several of the PDF library access services. For details of function

pool variables written by other services, refer to the z/OS ISPF Services Guide.

The variables are listed in alphabetical order. The first column lists the variable

name. The second column indicates the variable’s type, which corresponds to the

format parameter of the ISPF VDEFINE service. The third column specifies the

variable’s length, which corresponds to the length parameter of the VDEFINE

service.

The fourth column lists the PDF services that either read from or write to the

variable. An R in parentheses (R) after a service name indicates that the service,

when called, reads from the given variable. A W in parentheses (W) after a service

name indicates that the service, when called, writes to the given variable. All

variables are available to a dialog unless otherwise indicated.

The last column contains a brief description of the contents of the variable and any

restrictions on the value of the variable.

© Copyright IBM Corp. 1980, 2007 397

Variable Name Format Length Service (Access) Description

ZCMD Char 256 LMMDISP(W) Primary Command field from member list panel if the

command is not a valid ISPF or PDF primary

command.

ZDLBLKSZ Char 5 LMDLIST(W) Block size.

ZDLCATNM Char 44 LMDDISP(R),

LMDLIST(W)

Name of the catalog in which the data set was

located.

ZDLCDATE Char 10 LMDLIST(W) Creation date.

ZDLDEV Char 8 LMDLIST(W) Device type.

ZDLDSNTP Char 8 LMDLIST(W) DS name type (‘PDS’, ‘LIBRARY’, or ‘ ’).

ZDLDSORG Char 4 LMDLIST(W) Data set organization.

ZDLEDATE Char 10 LMDLIST(W) Expiration date.

ZDLEXT Char 3 LMDLIST(W) Number of extents used.

ZDLEXTX Char 5 LMDLIST(W) Number of extents used (long format).

ZDLLRECL Char 5 LMDLIST(W) Logical record length.

ZDLMIGR Char 3 LMDLIST(W) Whether the data set is migrated (YES or NO).

ZDLMVOL Char 1 LMDLIST(W) Multivolume indicator (Y or N).

ZDLOVF Char 3 LMDLIST(W) Whether variables ZDLEXTX and ZDLSIZEX are used

(YES or NO).

ZDLRDATE Char 10 LMDLIST(W) Date last referenced.

ZDLRECFM Char 5 LMDLIST(W) Record format.

ZDLSIZE Char 6 LMDLIST(W) Data set size in tracks.

ZDLSIZEX Char 12 LMDLIST(W) Data set size in tracks (long format).

ZDLSPACU Char 10 LMDLIST(W) Space units, one of the following: CYLINDERS,

MEGABYTES, KILOBYTES, BYTES, BLOCKS or

TRACKS.

ZDLUSED Char 3 LMDLIST(W) Percentage of used tracks or pages (PDSE).

ZDLVOL Char 6 LMDLIST(W) Volume serial.

ZDSN Char 44 LMMDISP(W) Name of the first or only data set in the concatenation

of the member list being displayed. This variable is

only available for member list panels.

ZDST Char 54 BRIF (W) EDIF (W) Title line data name for EDIF and BRIF.

ZEDBDSN Char 44 EDIT (R)

EDREC(W)

Backup data set name for standard edit recovery.

ZEDILMSG Char 240 Any Edit macro Long message text. Corresponds to the first 240 bytes

of the message that would be displayed if the

command were entered from the command line

instead of within an edit macro.

ZEDISMSG Char 24 Any Edit macro Short message text. Corresponds to the short message

that would be displayed if the command were entered

from the command line instead of within an edit

macro.

ZEDITCMD Char 8 Any Edit macro The last primary command entered in Edit.

ZEDMSGNO Char 8 Any Edit macro Message ID. Corresponds to the message that would

be displayed if the command were entered from the

command line instead of within an edit macro.

Dialog variables

398 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

|||||
|

Variable Name Format Length Service (Access) Description

ZEDROW Fixed 4 EDIT (R)

EDREC(W)

Row number of entry in standard edit recovery table.

ZEDSAVE Char 8 Data_changed EDIT

macro command

END command will save data (SAVE or NOSAVE).

ZEDTDSN Char 44 EDIT (R)

EDREC(W)

Target data set name for standard edit recovery.

ZEDTMCMD Char 8 Any Edit macro The edit command entered that caused an edit macro

to run. Can be the macro name or other name is the

edit DEFINE command was used to define an alias.

ZEDTMEM Char 8 EDIT (R)

EDREC(W)

Target member name (if applicable) for standard edit

recovery.

ZEDTRD Char 6 EDIT (R)

EDREC(W)

Volume serial of target data set for standard edit

recovery.

ZEDUSER Char

2 EDIT (R)

EDREC(W)

User data table extension for standard edit recovery.

ZEIBSDN Char 54 EDIF (R)

EDIREC(W)

Backup data name for EDIF edit recovery.

ZEIROW Fixed 4 EDIF (R)

EDIREC(W)

Row number of entry in EDIF edit recovery table.

ZEITDSN Char 54 EDIF (R)

EDIREC(W)

Target data name for EDIF edit recovery.

ZEIUSER Char

2 EDIF (R)

EDIREC(W)

User data table extension variable for EDIF edit

recovery.

ZERRALRM Char 3 ALL(W) The value YES if an alarm was specified in the

message definition; otherwise, the value NO. Set when

ISPF services issue a return code of 8 or greater.

ZERRHM Char 8 ALL(W) The name of a Help panel, if one was specified in the

message definition. Set when ISPF services issue a

return code of 8 or greater.

ZERRLM Char 512 ALL(W) Long-message text in which variables have been

resolved. Set when ISPF services issue a return code of

8 or greater.

ZERRMSG Char 8 ALL(W) Message ID. Set when ISPF services issue a return

code of 8 or greater.

ZERRSM Char 24 ALL(W) Short-message text in which variables have been

resolved. Set when ISPF services issue a return code of

8 or greater.

ZGRPLVL Char 8 LMHIER (W) ISPF table variable that contains the level of this ISPF

library in the controlled hierarchy.

ZGRPNME Char 8 LMHIER (W) ISPF table variable that contains the ISPF library

group name.

ZLAC Char 2 LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

Authorization code of the member.

ZLALIAS Char 8 LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

Name of the real member of which this member is an

alias.

ZLAMODE Char 3 LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

AMODE of the member.

Dialog variables

Appendix D. Dialog variables 399

Variable Name Format Length Service (Access) Description

ZLATTR Char 20 LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

Load module attributes. See the z/OS ISPF Services

Guide.

ZLCDATE Char 8 LMMADD(R)

LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

LMMREP(R)

Date on which the specified member was created. A

character string in the national format. For example,

yy/mm/dd or mm/dd/yy. If no value exists for this

variable, the PDF component will set the value to

blanks.

ZLC4DATE Char 10 LMMADD(R)

LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

LMMREP(W)

Date on which the specified member was created, in

4-character year format. A character string in the

national format. For example, yyyy/mm/dd or

mm/dd/yyyy. If no value exists for this variable, the

PDF component will set the value to blanks.

ZLCNORC Fixed 4 LMMADD(R)

LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

LMMREP(R)

Current number of records in the specified member. A

number from 0 to 65 535. If no value exists for this

variable, the PDF component will set the value to

blanks.

ZLINORC Fixed 4 LMMADD(R)

LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

LMMREP(R)

Number of records in the specified member when it

was first created. A number from 0 to 65 535.

ZLLIB Fixed 4 LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

Position of the specified member in the concatenated

data sets. A number from 1 to 4.

ZLMDATE Char 8 LMMADD(R)

LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

LMMREP(R)

Date on which the specified member was last

modified. A character string in the national format.

(For example, yy/mm/dd or mm/dd/yy.) If no value

exists for this variable, the PDF component will set the

value to blanks.

ZLM4DATE Char 10 LMMADD(R)

LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

LMMREP(W)

Date on which the specified member was last

modified, in 4-character year format. A character

string in the national format. (For example,

yyyy/mm/dd or mm/dd/yyyy.) If no value exists for this

variable, the PDF component will set the value to

blanks.

ZLMEMBER Char 8 LMMDISP(W) Name of the current selected member.

ZLMNORC Fixed 4 LMMADD(R)

LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

LMMREP(R)

The number of records that have been modified in the

specified member. A number from 0 to 65 535.

ZLMOD Fixed 4 LMMADD(R)

LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

LMMREP(R)

Modification level of the specified member. A number

from 0 to 99.

ZLMTIME Char 5 LMMADD(R)

LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

LMMREP(R)

Time when the specified member was last modified. A

character string in the form hh:mm.

Dialog variables

400 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Variable Name Format Length Service (Access) Description

ZLMSEC Char 2 LMMADD(R)

LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

LMMREP(R)

Seconds value of last modified time.

ZLSSI Char 8 LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

SSI (System Status Index) of the load module.

ZLPDSUDA Char 62 LMMDISP(W) A character string containing the contents of the user

data area in the PDS directory entry of the specified

member if the member’s statistics are not in PDF

format.

ZLRMODE Char 3 LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

RMODE of the member.

ZLSIZE Char 8 LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

Load module size (in Hex).

ZLTTR Char 6 LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

TTR of the member.

ZLUSER Char 7 LMMADD(R)

LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

LMMREP(R)

User ID of user who last modified the specified

member.

ZLVERS Fixed 4 LMMADD(R)

LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

LMMREP(R)

Version number of the specified member. A number

from 1 to 99. If no value exists for this variable, the

PDF component will set the value to blanks.

ZMEMCNT Char 8 LMMLIST(W) Number of members in the member list.

ZMLCOLS Char 80 LMMDISP(W) A character string that contains the member statistics

column headings that appear on the member list

panel display. This variable is only available for

member list panels.

ZMLCR Fixed 4 LMMDISP(W) The relative number in the member list of the member

that appears at the top of the member list display. Its

range is from 1-99 999. This variable is only available

for member list panels.

ZMLTR Fixed 4 LMMDISP(W) Number of members in the member list. Its range is

from 1-99 999. This variable is only available for

member list panels.

ZMSRTFLD Char 8 ALL(W) Contains the field name used to sort a member list.

Field name corresponds to the title line used in

member list panels, with the exceptions of the ’VV

MM’ field which is returned as VVMM, and the

attributes field which is returned as ATTRIBUT.

ZSCALIAS Char 1 LMINIT(W) Data set name is an alias (’Y’ or ’N’).

ZSCLM Char 1 LMMDISP(W)

LMMFIND(W)

LMMLIST(W)

Last updater of member. ’Y’ indicates SCLM was last

updater. ’N’ indicates PDF.

Dialog variables

Appendix D. Dialog variables 401

Variable Name Format Length Service (Access) Description

ZSCMVOL Char 1 LMINIT(W) Data set name is multivolume (’Y’ or ’N’).

ZUSERMAC Char 9 EDIT(R) EDIF(R)

VIEW(R) VIIF(R)

Application-wide edit macro.

2. Length limited only by ISPF restrictions on the length of table extension variables.

Dialog variables

402 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

PDF non-modifiable variables

The following read-only variables are available to PDF component dialogs:

 Variable Name Format Length Service (Access) Description

ZCUNIT Char 8 none Unit name to be used for temporary allocations. This

variable comes from ISPF configuration table keyword

PDF_DEFAULT_UNIT.

ZCUSIZE Fixed 4 none Number of kilobytes available for use by the edit

UNDO command when running in SETUNDO

STORAGE mode. This variable comes from ISPF

configuration table Keyword UNDO_STORAGE_SIZE.

See z/OS ISPF Edit and Edit Macros for further

information.

ZICFPRT Char 3 none ICF indicator. ’YES’ - All foreground print requests

will be processed using ICF. ’NO’ - ICF will not be

used. This variable comes from ISPF configuration

table keyword PRINT_USING_ICF.

ZPDFREL Char 8 none PDF version number in the form ″PDF x.y ″. The x.y

is a sequence number. If x.y:

v <= 4.2 means the x.y version.release of PDF

v = 4.3 means ISPF for OS/390 Release 2

v = 4.4 means PDF 4.2.1 and ISPF OS/390 Release 3

ZSESS Char 8 none This variable contains either ’Y’ or ’N’ and comes

from the ISPF configuration table keyword

USE_SESSION_MANAGER. See the description of the

general system variable ZSM for additional

information.

ZSWIND Char 4 none Sliding window value used by PDF for determining

the century of 2-character years. This variable comes

from ISPF configuration table keyword

YEAR_2000_SLIDING_RULE. Dates less than or equal

to this value are 20xx. Dates greater than this value

are 19xx.

Dialog variables

Appendix D. Dialog variables 403

Dialog variables

404 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Appendix E. System variables

The system variables are described with type and pool information in the

following tables. The variables are also discussed with the ISPF service to which

they apply.

Commonly used system variables that a dialog can access are listed below. They

are grouped by topic.

The first column gives the name of the variable. The second column indicates in

which pool the variable resides. The following abbreviations are used:

func Function pool

shr Shared pool

prof Profile pool

any Any pool.

The third column indicates the variable’s type. The following abbreviations are

used:

in Input variable, set by a dialog to provide information to ISPF

out Output variable, set by ISPF to provide information to dialogs

non Non-modifiable output variable

i/o Both an input and an output variable.

The fourth column gives the length of the variable.

The fifth column gives a brief description of the variable.

Numeric system variables set by ISPF are right-justified and padded with zeros on

the left, if necessary. If a program function uses the VCOPY service to access the

variable, the value will be in character string format rather than in fixed binary

format.

© Copyright IBM Corp. 1980, 2007 405

Configuration utility

 Name Pool Type Len Description

ZCFGCMPD shr non 10 Current Configuration module compilation date. ZCFGCMPD contains

the national language delimiter and contains the date in the format

YYYY/MM/DD. For countries that use a delimiter other than a slash (/),

that delimiter replaces the slash in the date representation.

ZCFGCMPT shr non 5 Current Configuration module compilation time. ZCFGCMPT contains

the national language delimiter and contains the time in the format

HH:MM. For countries that use a delimiter other than a colon (:), that

delimiter replaces the colon in the time representation.

Note: This field will be blank for a configuration module compiled with

a previous version of ISPF.

ZCFGKSRC shr non 54 Keyword source data set and member for the current configuration

module.

Note: This field will be blank for a configuration module compiled with

a previous version of ISPF.

ZCFGLVL shr non 8 Current Configuration module level.

ZCFGMOD shr non 8 Current Configuration module name.

Time and date

 Name Pool Type Len Description

ZDATE shr non 8 Current date. The format of ZDATE depends on the current national

language (see ZDATEF and ZDATEFD).

ZDATEF shr non 8 Current national language date format using the characters DD for day,

MM for month, and YY for year. ZDATEF contains the national language

delimiter. For example, DD/MM/YY, YY/MM/DD, MM.DD.YY. For

countries that use a delimiter other than a slash (/), that delimiter

replaces the slash in the date representation.

ZDATEFD shr non 8 The date format as described under ZDATEF but with the national

language convention instead of DD, MM, and YY.

ZDATESTD shr non 8 Current date with a 4-digit year (YYYY/MM/DD). The format of

ZDATESTD depends on the current national language (see ZDATEF and

ZDATEFD).

ZDAYOFWK shr non 8 The name of the day of the week.

ZDAY shr non 2 Day of month (2 characters)

ZJDATE shr non 6 Day-of-year date (format yy.ddd)

ZJ4DATE shr non 8 Day-of-year date (format yyyy.ddd)

ZMONTH shr non 2 Month of year (2 characters)

ZSTDYEAR shr non 4 All 4 digits of the current year (4 characters).

ZTIME shr non 5 Time of day (format hh:mm)

ZTIMEL shr non Time of day (format hh:mm:ss:TQ —where T is tenths of a second, and Q

is hundredths)

ZYEAR shr non 2 Year (2 characters)

The current date is displayed in the appropriate format for the session language,

where DD=DAY, MM=MONTH, and YY=YEAR. For countries that use a delimiter

other than a slash (/), that delimiter replaces the slash in the date representation.

System variables

406 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

General

 Name Pool Type Len Description

Z shr non 0 Null Variable

ZACCTNUM shr non 40 The MVS account number specified at logon time.

ZAPLCNT shr non 4 Number of times APL invoked for a logical screen

ZAPPLID shr non 8 Application identifier

ZAPPTTL any in N/A When running in GUI mode, the title to be displayed in the window

frame.

Note: If the panel is to be displayed in a pop-up window, the value

specified in ZWINTTL will be used instead of ZAPPTTL.

ZBDMAX shr i/o 9 Maximum number of displays that can occur within a batch mode

session. This value is obtained from the BDISPMAX keyword on the

ISPSTART command. See “Avoiding panel loop conditions in the batch

environment” on page 40.

ZBDMXCNT shr non 9 Count of current number of displays in a batch mode session

ZCS shr non 5 NLS currency symbol

ZCSDLL shr non 8 File name of the DLL required for this level of code for the Client/Server

ZDECS shr non 1 NLS decimal separator character

ZDEL prof non 1 The delimiter is used to separate stacked commands. The default

delimiter is a semicolon (;).

ZENTKTXT any in 12 When you are running in GUI mode, the name that appears on the Enter

key push button. If this variable is not found, “Enter” appears on the

push button.

ZENVIR shr non 32 Environment description:

v Characters 1 to 8 contain the product name and sequence number, in

the form ISPF x.y. The sequence number x.y indicates the following:

 5.9 means ISPF for z/OS Version 1 Release 9.0

 5.8 means ISPF for z/OS Version 1 Release 8.0

 5.7 means ISPF for z/OS Version 1 Release 7.0

 5.6 means ISPF for z/OS Version 1 Release 6.0

 5.5 means ISPF for z/OS Version 1 Release 5.0

 5.2 means ISPF for z/OS Version 1 Release 2.0

 5.0 means ISPF for z/OS Version 1 Release 1.0

 OR

 5.0 means ISPF for OS/390 Version 2 Release 10.0

 4.8 means ISPF for OS/390 Version 2 Release 8.0

Note: See also the system variables ZISPFOS and ZOS390RL.

v Characters 9 to 16 contain the generic operating system name (MVS).

v Characters 17 to 24 contain the operating system environment (TSO or

BATCH).

v Characters 25 to 32 contain blanks and are reserved.

ZEURO shr non 1 The EURO currency symbol.

ZGUI shr non 68 Workstation address or name (in character format) if ISPSTART is issued

with the GUI parameter or if specified on the Settings GUI invocation

panel. ZGUI will be set to blank if ISPSTART is issued without the GUI

parameter or if GUI is not invoked from the Settings panel.

ZISPFOS shr non 30 The level of ISPF code that is running as part of z/OS on your system.

This level might or might not match the z/OS level found in ZOS390RL.

ZISPFRC shr in 8 Return code from ISPSTART-selected dialog to invoking application.

System variables

Appendix E. System variables 407

Name Pool Type Len Description

ZKEYHELP any in 8 Keys help panel identifier. If a keys help panel is not specified on the

referenced keylist, the application can provide the keys help panel name

in this variable. If the help panel name is present as part of the

referenced keylist definition, it takes precedence over the ZKEYHELP

value. This system variable must be redefined each time the keys help

panel is to change.

ZLANG prof non 8 Session language

ZLOGO shr non 3 Indicates whether the user has requested bypass of LOGO panel. NO

indicates that the user has specified the NOLOGO keyword at the time

ISPF was called, thus, requesting that the LOGO panel be bypassed.

Otherwise, the value of the variable will be YES.

ZLOGON shr non 8 Stepname of TSO logon procedure

ZNESTMAC any in 2 When set to a value of NO, REXX and CLIST edit macros are not

invoked as nested commands, even when the NESTMACS parameter is

specified on the ISPSTART command.

ZMLPS shr non 3 Indicates whether the ISPF Profile Sharing feature is active. ZMLPS has a

value of either YES or NO.

ZOS390RL shr non 16 Indicates the z/OS release running on your system.

ZPANELID shr non 8 The name of the currently displayed panel.

ZPFKEY shr non 4 The name of the PF key (PFxx) in effect when the user exits the panel. If

ZPFKEY = PF00 then no PF key is in effect.

ZPLACE prof i/o 7 Command line placement (ASIS or BOTTOM)

ZPREFIX shr non 8 TSO user prefix

ZPROFAPP prof in 8 Name of application profile pool extension table

ZSCRCUR shr non 4 Displays the number of logical screens currently in use.

ZSCREENC shr non 5 Cursor position within the logical screen data.

ZSCREENI shr non ? Logical screen data. Size depends upon your screen size.

ZSCRNAME shr in 8 Screen name set by dialog. The screen name is in effect only for the select

level in which it was defined. Option 7.3 can alter ZSCRNAME, but this

will have no impact.

See “ZSCRNAME examples” on page 410 for examples of its use.

ZSCRMAX shr non 4 Displays the number of logical screens allowed by the installation.

ZSCTPREF shr non 4 First site command table prefix

ZSCTPRE2 shr non 4 Second site command table prefix

ZSCTPRE3 shr non 4 Third site command table prefix

ZSCTSRCH shr non 1 Search order for site command tables relative to system command table.

Set to either B (Before ISP) or A (After ISP).

ZSEQ shr non 5 Unique number within the sysplex.

ZSM shr i/o 3 Indicates whether session manager panels will be used for ISPF options 4

and 6. This variable is initialized from the ISPF configuration table

keyword USE_SESSION_MANAGER at startup and stored in the shared

variable pool. Once initialized it can only be changed with Option 0 -

Settings or by use of the RESET_USE_SESSION_MANAGER

configuration option.

ZSYSICON shr non 8 The 8-character variable that contains the command to be executed when

the system icon is double-clicked or close is selected.

System variables

408 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

|||||
|
|

|||||
|

|||||

Name Pool Type Len Description

ZSYSID shr non 8 The 8-character SYSNAME obtained from the SYS1.PARMLIB member

IEASYSxx which is read at IPL time. NONAME is the default value of

SYSNAME. The operator can change this value at IPL time. See the z/OS

MVS Initialization and Tuning Reference for more information.

ZSYSNODE shr non 12 The network node name of your installation’s JES. This name identifies

the local JES in a network of systems or system complexes being used for

network job entry (NJE) tasks. The node name returned in ZSYSNODE

derives from the NODE initialization statement of JES.

If the system finds that the subsystem is not active, the ZSYSNODE

variable contains the string --INACTIVE-- (note the string delimiters).

If the system finds that the subsystem is neither JES2 4.3 or later, nor

JES3 5.1.1 or later, the ZSYSNODE variable contains the string

--DOWNLEVEL-- (note the string delimiters).

The value in ZSYSNODE remains the same throughout the ISPF session.

Note: If, for instance, the JES subsystem is taken down during an ISPF

session and the node name is changed, the value in ZSYSNODE will still

contain the value as determined at ISPF initialization.

ZSYSPLEX shr non 8 The MVS sysplex name as found in the COUPLExx or LOADxx member

of SYS1.PARMLIB. If no sysplex name is specified in SYS1.PARMLIB,

ZSYSPLEX contains blanks.

ZSYSPROC shr non 8 TSO Logon Procedure name. In foreground, will have the name of the

current logon procedure; in batch, will have the value ’INIT’; a Started

Task will have the Started Task procedure name.

ZTEMPF shr non 44 Name of temporary data set for file tailoring output

ZTEMPN shr non 8 DDNAME of temporary data set for file tailoring output

ZTERMCID shr non 5 CCSID coded character set identifier of the terminal. Set by ISPF based

on the code page and character set of the terminal. If the terminal code

page and character set cannot be queried or if they are not supported by

ISPF, this variable will be blank.

ZTERMCP shr non 4 CECP support 4-digit code page.

Note: ZTERMCS is defined as character length 4. It cannot handle

5-character character sets. For example, the character set 65535 is

displayed in ZTERMCS as ″5535″. This does not mean that ISPF has

defined character set 5535 (X’159F’). Two other Z variables, ZTERMCS5

and ZTERMCP5, for character set and code page respectively, were

created to handle 5-character character sets and code pages. For example,

the character set 65535 is displayed in ZTERMCP5 as 65535.

ZTERMCP5 shr non 5 CECP support 5-digit code page

ZTERMCS5 shr non 5 CECP support 5-character set

ZTERMCS shr non 4 CECP support 4-digit character set

ZTHS shr non 1 NLS thousands separator character

ZTS shr non 1 NLS time separator character

ZTSICMD shr non 32767 The entire initial invocation command string which invoked the ISPF

environment. If storage cannot be obtained at startup, only the first 50

characters will be saved. The maximum length is 32767.

ZTSSCMD shr non 32767 SELECT portion of the initial invocation command. The maximum length

is 32767.

ZUCTPREF shr non 4 First user command table name

ZUCTPRE2 shr non 4 Second user command table name

System variables

Appendix E. System variables 409

Name Pool Type Len Description

ZUCTPRE3 shr non 4 Third user command table name

ZUSER shr non 8 User ID

ZVERB shr out 8 Command verb after a SETVERB command table action

ZWINTTL any in N/A Title to be displayed in pop-up window frame

ZWSCDPG shr non 4 When running in GUI mode, the code page of the workstation. When not

running in GUI mode, value will be blank.

ZWSCON shr non 68 TCP/IP or APPC address when ISPF session is connected to a

workstation.

ZWSOPSYS shr non 16 Operating system of workstation to which the session is connected. The

first 10 characters are the operating system name, followed by a blank,

followed by two 2-digit numbers separated by a blank. These numbers

are returned to ISPF from the operating system and change by version

and release.

ZSCRNAME examples

Example 1

On the ISPF primary option panel the user issues the command SCRNAME POP.

The primary option panel’s screen name is now POP. The user then invokes

CLIST1.

CLIST1

 PROC 0

 ISPEXEC DISPLAY PANEL(PANELA)

 SET &ZSCRNAME = EDIT1

 ISPEXEC VPUT (ZSCRNAME) SHARED

 ISPEXEC EDIT DATASET (’PROJECT.GROUP.TYPE(BBBBBB)’)

 SET &ZSCRNAME = EDIT2

 ISPEXEC VPUT (ZSCRNAME) SHARED

 ISPEXEC EDIT DATASET (’PROJECT.GROUP.TYPE(CCCCCC)’)

 SET &ZSCRNAME = BROWSE1

 ISPEXEC VPUT (ZSCRNAME) SHARED

 ISPEXEC BROWSE DATASET (’PROJECT.GROUP.TYPE(DDDDDD)’)

 SET &ZSCRNAME = LASTPAN

 ISPEXEC VPUT (ZSCRNAME) SHARED

 ISPEXEC DISPLAY PANEL(PANELA)

After the CLIST processes, the following results occur:

1. PANELA displays with screen name POP.

2. The EDIT session displays with the screen name EDIT1.

3. The next EDIT session displays with the screen name EDIT2.

4. The BROWSE session displays with the screen name BROWSE1.

5. PANELA displays with the screen name LASTPAN.

6. End from PANELA and the primary option panel displays with screen name

POP.

Example 2

On the ISPF primary option panel the user issues the command SCRNAME POP.

The primary option panel’s screen name is now POP. The user then invokes

CLIST1 with the following results:

 1. PANELA displays with screen name POP.

 2. The EDIT session displays with the screen name EDIT1.

 3. The user enters SCRNAME MYEDIT, so the screen name becomes MYEDIT.

System variables

410 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

4. After the EDIT session ends, the CLIST sets ZSCRNAME to EDIT2.

 5. The EDIT session displays with the screen name EDIT2.

 6. After this EDIT session ends, the CLIST sets ZSCRNAME to BROWSE1.

 7. The BROWSE session displays with the screen name BROWSE1.

 8. The user enters SCRNAME MYBROWSE PERM, so the screen name becomes

MYBROWSE.

 9. After the BROWSE session ends, the CLIST sets ZSCRNAME to LASTPAN.

10. PANELA displays with the screen name MYBROWSE. The CLIST command

ZSCRNAME=LASTPAN is ignored because the user issued the SCRNAME

MYBROWSE command with the PERM parameter.

11. The CLIST completes and the primary option panel displays with the screen

name MYBROWSE (again because the user issued the SCRNAME

MYBROWSE command with the PERM parameter).

Example 3

On the ISPF primary option panel the user issues the command SCRNAME POP.

The primary option panel’s screen name is now POP. The user then invokes

CLIST2.

CLIST2

 PROC 0

 SET &ZSCRNAME = STATE

 ISPEXEC VPUT (ZSCRNAME) SHARED

 ISPEXEC SELECT PANEL(MENUA) SCRNAME(NATION)

 ISPEXEC DISPLAY PANEL(PANELA)

After the CLIST processes, the following results occur:

1. MENUA displays with screen name NATION.

2. PANELA displays with the screen name STATE.

3. End from PANELA and the primary option panel displays with screen name

POP.

Terminal and function keys

 Name Pool Type Len Description

ZCOLORS shr non 4 Number of colors supported by the terminal type (either 1 or 7)

ZDBCS shr non 3 DBCS terminal capability (YES or NO)

ZFKA prof non 8 Current state of the function key area form (LONG, SHORT, OFF (no

display))

ZGE shr non 3 Terminal support for graphic escape order:

YES graphic escape is supported

NO graphic escape is not supported
Note: If you are running in GUI mode, ZGE will be set to NO.

ZHILITE shr non 3 Extended highlighting availability (YES or NO)

ZIPADDR shr non 15 TCP/IP address of the currently connected TN3270 workstation. Entering

the TERMSTAT QUERY option of the ENVIRON command will refresh

the value.

ZIPPORT shr non 4 TCP/IP port number of the currently connected TN3270 workstation.

Entering the TERMSTAT QUERY option of the ENVIRON command will

refresh the value.

ZLUNAME shr non 8 VTAM LU name of the current TSO session. Entering a TERMSTAT

QUERY command will refresh the value.

System variables

Appendix E. System variables 411

Name Pool Type Len Description

ZKEYS prof out 4 Number of Function keys

ZKLAPPL shr non 4 If KEYLIST is ON and it is a panel with the)PANEL statement, this

contains the application id where the current keylist came from.

ZKLNAME shr non 8 If KEYLIST is ON and it is a panel with the)PANEL statement, this

contains the name of the current keylist.

ZKLTYPE shr non 1 If KEYLIST is ON and it is a panel with the)PANEL statement, this

contains either P (for Private) or S (for Shared) for the current keylist.

ZKLUSE prof i/o 1 If KEYLIST is ON this contains Y, if it is OFF, it contains an N.

ZPFCTL prof i/o 5 User authorization to use PFSHOW command

v USER—User controls function key display with PFSHOW command

v ON—Display function key definitions on all panels

v OFF—Do not display function key definitions

ZPFFMT prof i/o 4 Number of Function key definitions displayed per line

v SIX—Always display six keys per line

v MAX—Display as many keys as will fit on each line

ZPFSET prof i/o 4 Function key definition set displayed

v PRI—Primary set (1-12)

v ALT—Alternate set (13-24)

v ALL—All keys (1-24)

ZPFSHOW prof out 4 PFSHOW command status

ZPFxx prof i/o 255 Setting for Function keys:

ZPF13-ZPF24 contain settings for the primary keys (for 12-key terminals:

physical keys 1-12; for 24-key terminals: physical keys 13-24)

ZPF01-ZPF12 contain settings for the alternate keys (for 24-key terminals

only: physical keys 1-12)

The maximum length is 255.

ZPFLxx prof i/o 8 Setting for Function key labels:

ZPFL13-ZPFL24 contain labels for the primary keys

ZPFL01-ZPFL12 contain labels for the alternate keys

ZPRIKEYS prof i/o 4 Indicates the set of Function keys that will be the primary keys

v LOW—1 to 12 are primary keys

v UPP—13 to 24 are primary keys

ZSCREEN shr non 1 Logical screen number up to 32 screens (1-9, A-W)

ZSCREEND shr non 4 Screen depth available for dialog use. In batch mode, this variable is set

by the value specified for BATSCRD on the ISPSTART call.

System variables

412 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Name Pool Type Len Description

ZSCREENW shr non 4 Screen width available for dialog use. In batch mode this variable is set

by the value specified for BATSCRW on the ISPSTART call.

ZSCREEND and ZSCREENW are generally the dimensions of the

physical display screen. There are two exceptions:

1. On a 3290, if a dialog is executing on a display with a width of 160

characters and the user does a vertical split, then ZSCREENW is 80.

2. On a 3278 model 5, if a user has specified SCREEN FORMAT IS STD,

then ZSCREENW is 80 and ZSCREEND is 24, rather than the

maximum physical size of 132 by 27.

ZSCRMAXD shr non 4 Maximum screen depth available for dialog use. In batch mode, this

variable is set by the value specified for BATSCRD on the ISPSTART call.

ZSCRMAXW shr non 4 Maximum screen width available for dialog use. In batch mode, this

variable is set by the value specified for BATSCRW on the ISPSTART call.

ZSCRMAXD and ZSCRMAXW are identical to ZSCREEND and

ZSCREENW, except for terminals on which an alternate size is available.

In that case, ZSCRMAXD and ZSCRMAXW contain the screen

configuration size that produces the largest screen.

For the 3290, these variables contain sizes of the hardware partition on

which ISPF is operating.

ZSPLIT shr non 3 Split-screen mode in effect (YES or NO)

ZTERM prof out 8 Terminal type as defined by option 0

Scrolling

 Name Pool Type Len Description

ZAMT prof i/o 4 Scroll amount for functions such as Dialog Test, the Keylist Utility, the

Command Table Utility, and the LIBDEF Utility

ZSCBR prof i/o 4 Scroll amount for the BROWSE service

ZSCED prof i/o 4 Scroll amount for the EDIT service

ZSCML prof i/o 4 Scroll amount for member lists

ZSCRML shr non 1 Specifies if ISPF should scroll to the first member selected in the member

list after processing or disable the member list from automatic scrolling

and instead place the cursor in front of the last member selected.

ZSCROLLA shr out 4 Value from scroll amount field (PAGE, MAX, number)

ZSCROLLD any in 4 Value to be used as default scroll value for scrollable dynamic areas and

table display

ZSCROLLN shr out 4 Scroll number as computed from the value in the scroll amount field

ZXSMAX shr non 4 Maximum scroll amount allowed to be used in any scroll operation.

ZXSMIN shr non 4 Minimum scroll amount allowed to be used in any scroll operation.

ZUSC prof i/o 4 Scroll amount for the Data Set List Utility

PRINTG command

 Name Pool Type Len Description

ZASPECT func in 4 Aspect ratio of printed output from PRINTG

System variables

Appendix E. System variables 413

Name Pool Type Len Description

ZDEVNAM func in 8 Device name for PRINTG

ZFAMPRT func non 4 Family printer type for PRINTG

Table display service

 Name Pool Type Len Description

ZTDADD func out 3 More rows needed to satisfy scroll request (YES|NO)

ZTDAMT func out 4 Number of rows that the dialog should add to satisfy scroll

ZTDLROWS func in 6 Number of rows in the logical table (dynamic table expansion)

ZTDLTOP func in 6 Maps current top row in physical table to its position in logical table.

ZTDMARK any in See

note

User-defined text for table display Bottom-of-Data marker

Note: Value can be any length that is not more than the screen width.

ZTDMSG any in 8 User-defined message ID for table display top-row-displayed indicator

ZTDRET func in 8 Defines whether dialog wants to use scroll return feature.

ZTDROWS func out 6 Number of table rows upon return from table display

ZTDSCRP func in/out 6 CRP of top row to be displayed after the scroll

ZTDSELS func out 4 Number of selected table rows upon return from each table display

ZTDSIZE func out 4 Size (number of model sets) of the table display scrollable section

ZTDSRID func out 6 Rowid of the row pointed to by ZTDSCRP

ZTDTOP func out 6 Row number (CRP) of top row displayed during most recent table

display

ZTDVROWS func out 6 Number of visible table rows upon return from table display

LIST service

 Name Pool Type Len Description

ZLSTLPP shr non 4 Number of lines per page in list data set

ZLSTNUML shr non 4 Number of lines written to current list data set page

ZLSTTRUN shr non 4 List data set record length truncation value

LOG and LIST data sets

 Name Pool Type Len Description

ZLOGNAME shr non 44 Contains the fully qualified data set name of the log data set.

ZLSTNAME shr non 44 Contains the fully qualified data set name of the list data set.

Dialog error

 Name Pool Type Len Description

ZERRALRM func out 3 Message alarm indicator (YES or NO)

ZERRHM func out 8 Name of help panel associated with error message

System variables

414 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Name Pool Type Len Description

ZERRLM func out 512 Long error message text

ZERRMSG func out 8 Error message-id

ZERRSM func out 24 Short error message text

ZERRTYPE func out 8 Error message type

ZERRWIND func out 6 Error message window type

Tutorial panels

 Name Description

ZCONT Name of next continuation panel

ZHINDEX Name of first index panel

ZHTOP Name of top panel

ZIND YES specifies an index page

ZUP Name of parent panel

Selection panels

 Name Description

ZCMD Command input field

ZPARENT Parent menu name (when in explicit chain mode)

ZPRIM YES specifies panel is a primary option menu

ZSEL Command input field truncated at first period

DTL panels or panels containing a)PANEL section

 Name Pool Type Len Description

ZCURFLD func out 8 Name of field (or list column) containing the cursor when the user exits

the panel.

ZCURINX func out 8 For table display panels, the current row number of the table row

containing the cursor. The value ZCURINX is in character format. If the

cursor is not within a table row, this value will be 0.

ZCURPOS func out 4 Position of the cursor within the field specified by ZCURFLD when the

user exits the panel. The value in ZCURPOS is in character format. If the

cursor is not within a field, ZCURPOS will contain a 1.

Note: These variables will contain the values that would result if they were set to

.CURSOR, .CSRPOS, and .CSRROW, as the first statements in the panel’s

)PROC section.

System variables

Appendix E. System variables 415

System variables

416 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Appendix F. Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. The major

accessibility features in z/OS enable users to:

v Use assistive technologies such as screen readers and screen magnifier software

v Operate specific or equivalent features using only the keyboard

v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user

interfaces found in z/OS. Consult the assistive technology documentation for

specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E

Primer, z/OS TSO/E User’s Guide, and z/OS ISPF User’s Guide Vol I for information

about accessing TSO/E and ISPF interfaces. These guides describe how to use

TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF

keys). Each guide includes the default settings for the PF keys and explains how to

modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer/Library

Server versions of z/OS books in the Internet library at:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

© Copyright IBM Corp. 1980, 2007 417

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/

418 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1980, 2007 419

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie, NY 12601-5400

USA

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Programming Interface Information

This publication primarily documents information that is NOT intended to be used

as Programming Interfaces of ISPF.

This publication also documents intended Programming Interfaces that allow the

customer to write programs to obtain the services of ISPF. This information is

identified where it occurs, either by an introductory statement to a chapter or

section or by the following marking:

+---------------------Programming Interface information----------------------+

+------------------End of Programming Interface information------------------+

420 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, other countries, or both:

 AD/Cycle

APL2

BookManager

BookMaster

C++/MVS

COBOL/370

Common User Access

CUA

DB2

DFSMSdfp

DFSMSrmm

DFSORT

FFST

GDDM

IBM

Language Environment

MVS

MVS/XA

OS/390

RACF

SAA

Systems Application Architecture

Tivoli

VTAM

z/OS

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in

the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 421

422 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Index

Special characters
_ (underscore) character, default

attribute 173

.ALARM control variable 285

.ATTR control variable
considerations 288

description 286

override conditions 207

using with table display panels 288

.ATTRCHAR control variable
description of 287

dynamic area override 147

override conditions 207

.AUTOSEL control variable 289

.CCSID section of message

definition 313

.CSRPOS control variable 289

.CSRROW control variable 290

.CURSOR control variable
description 291

example 285

when not initialized or set to

blank 291

.HELP control variable
description 292, 301, 309

example 285

.HHELP control variable
description 292

.KANA control variable in messages 309

.MSG control variable
description 292

in batch mode 39

panel user exit messages 255

.NRET control variable 293

.PFKEY control variable 294

.RESP control variable
description 294

in batch mode 38

.TRAIL control variable
description 295

example 119, 237

.TYPE keyword, message definition 310

.WINDOW keyword, message

definition 310

.ZVARS control variable
description 295, 296

example 296

.ZVARS control variable, associating a

PDC with a variable name in

)ABCINIT 164

)ABC section of panel definition 159

)ABC section, defining pull-down

choice 162

)ABCINIT section of panel

definition 165

)ABCPROC section of panel

definition 166

)AREA section of panel definition 166

)ATTR section of panel definition 172

)BLANK file-tailoring control

statement 321, 322

)BODY section of panel definition 209

)BODY statement, WINDOW

keyword 112

)CCSID section of panel definition 214

)CM file-tailoring control statement 322

)DEFAULT skeleton control

statement 323

)DO file-tailoring control statement 324

)DOT file-tailoring control statement 326

)ELSE file-tailoring control

statement 327

)END section of panel definition 215

)END statement, required on panel

definition 113

)ENDDO file-tailoring control

statement 324

)ENDDOT file-tailoring control

statement 326

)ENDREXX file-tailoring control

statement 328

)ENDSEL file-tailoring control

statement 331

)FIELD section of panel definition 215

)HELP section of panel definition 222

)IF file-tailoring control statement 327

)IM file-tailoring control statement 327

)INIT section of panel definition 223

)ITERATE file-tailoring control

statement 328

)LEAVE file-tailoring control

statement 328

)LIST section of panel definition 223

)MODEL section of panel definition 224

)N comment statement 322

)NOP file-tailoring control statement 328

)PANEL statement KEYLIST

parameter 225

)PNTS statement 228

)PROC section of panel definition 232

)REINIT section of panel definition 233

)REXX file-tailoring control

statement 328

)SEL file-tailoring control statement 331

)SET file-tailoring control statement 332

)SETF file-tailoring control

statement 332

)TB file-tailoring control statement 333

)TBA file-tailoring control statement 333

*REXX panel statement 258

SOURCELINE function 260

‘’ (quotation marks), enclosing

literals 115

% sign
beginning a command procedure

name with 12

default attribute character 173

÷> operator on the IF statement 247

÷< operator on the IF statement 247

÷= operator on the IF statement 247

> (greater than) operator on the IF

statement 247

>= operator on the IF statement 247

< operator on the IF statement 247

<= operator on the IF statement 247

+ sign
continuation character for literals 115

default attribute character 173

= (equal sign) operator on the IF

statement 247

Numerics
3278 Mod 5

batch mode 38

graphics interface mode 151

3290
batch mode 39

graphics interface mode 151

900-999 error return codes 25

999 error return code 25

A
A, used to specify alternate tabbing 333

ABCINIT section of panel definition 165

ABCPROC section of panel

definition 166

abend
description 27

diagnostic panels 386

ABEND
codes 387

accelerators 102

accessibility 417

accessing table data 72

action bar choice initialization panel

definition section
definition 165

action bar choice processing section of

panel definition
definition 166

action bar choice section of panel

definition
definition 159

action bars and pull-down choices 92

ADDPOP parameter on ISPSTART

command 11

ADDPOP service 91, 92

address, APPC 99

address, TCP/IP 99

ADDSOSI built-in function on assignment

statement 241

alarm indicator message 414

ALARM keyword, message

definition 310

ALPHA parameter on VER

statement 269

ALPHAB parameter on VER

Statement 270

alternate tabbing 333

APL keyboard character translations 361

© Copyright IBM Corp. 1980, 2007 423

APL2
multiple calls of 33

number of times invoked, system

variable containing 407

using 31

workspace used as the function

pool 34

APPC address
definition 99

application identifier, system

variable 407

application keylist 91

application profile pool 62, 67

application profile pool extension name,

system variable 408

application-id parameter on

ISPSTART 11, 16

area section of panel definition
definition 166

AREA(DYNAMIC) parameter in)ATTR

section 175

AREA(SCRL) parameter in)ATTR

section 180

argument variables 72

array of variable lengths on panel user

exit parameter 255

array of variable names on panel user

exit parameter 255

ASIS parameter
in)BODY header statement 211

on VGET panel statement 280

on VPUT panel statement 282

with JUST keyword 189

aspect ratio system variable for

PRINTG 413

assignment statement in panel

definition 235

attention exits (CLIST) 30

ATTN keyword in)ATTR section 180

ATTN statement 30

attribute characters
default 173

restriction 174

attribute section of panel definition
basic attribute types 200

CUA attribute types 203

default characters 173

definition 172

other attribute types 205

requirements for table display

panel 138

authorized programs, invoking 28

authorized TSO commands, invoking 28

AUTOSEL (.AUTOSEL) control

variable 289

AUTOSEL (auto-selection) 134

autoskip
description 199

graphic area 151

B
BACK tutorial command 301

background display execution 37

background panel processing 37

BARRIER keyword 118

batch display facility, using 37

batch environment
avoiding loops in batch 40

display error processing 39

log and list data sets 40

maximum number of panel

displays 40

processing commands 39

terminal characteristics 38

TSO 36

batch execution
description 36

TSO error processing 37

TSO sample job 36

BATSCRD keyword on ISPSTART

command 11, 38

BATSCRW keyword on ISPSTART

command 11, 38

BDBCS keyword on ISPSTART

command 11, 39

BDISPMAX keyword
and ZBDMAX system variable 407

on ISPSTART command 11, 40

BIT parameter on VER statement 270

BKGRND keyword on ISPSTART

command 11

BKGRND parameter on ISPSTART 16

BLANK file-tailoring control

statement 322

blinking, specifying for HILITE

keyword 188

body section of panel definition
controlling width of panel 209

defining 209

definition 209

formatting message field 211

requirements 138

requirements for table display

panel 138

sample 213

Boolean operators on the IF

statement 249

bottom-of-data marker
definition 134

system variable containing for table

display, user defined 414

BREDIMAX keyword on ISPSTART

command 11, 39

BRIF service 87

BROWSE service 86

browse service scroll amount, system

variable 413

browse services panel definition, scroll

field location 108

built-in function on assignment

statement 242

C
call of ISPF 9, 10

CAPS keyword in panel)ATTR

section 138, 175, 181

CCSID parameter of the GETMSG

service 348

CCSID section of message definition
messages tagged 313

CCSID section of panel definition
definition 214

CCSID section of panel definition

(continued)
extended code page support 348

chain mode, explicit 121

char parameter
with PAD keyword 193

with PADC keyword 194

with PAS keyword 195

character compare on IF statement 248

character level attribute 148

character translations for APL, TEXT and

Katakana keyboards 361

CHINESES keyword on ISPSTART

command 11, 17

CHINESET keyword on ISPSTART

command 11, 17

CKBOX keyword in panel)ATTR

section 181

CLEAR keyword on)MODEL statement

in table display panel 139

CLIST
attention exits 30

invoking procedure from ISPSTART

command 18

variables used in procedure 8

CLIST edit macros, running

unnested 408

CM file-tailoring control statement 322

CMD
keyword

in)PROC section 118

in panel)BODY section 210

parameter on ISPSTART

command 11

code page parameter for ISPSTART 15

coded character set identifier, system

variable 409

CODEPAGE 15

COLOR keyword in panel)ATTR

section 182

Combination boxes 102

COMBO keyword in panel)ATTR

section 183

command field
naming of 108

naming with the CMD keyword 210

panel)BODY section 209

position in panel definition 108

command field of a table display

panel 134

command line placement, system

variable 408

COMMAND parameter, in panel)PROC

section 118

command procedure 63

command tables
and application IDs 16

definition of 2

ISPCMDS system command table 2

command verb after a SETVERB

command table action, system

variable 410

commands
ISPF, in batch environment 38

processing in batch environment 39

comment statements 114

comments, optional display 189

424 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Common User Access (CUA)
description of ISPF support 91

dot leaders 110

keyword values 204

compare character vs. numeric 248

compiled REXX 29, 253

COMPOUND variables 8

concatenation of variables 115

conditional padding of panel field 175

conditional substitution string 321

configuration utility (system

variables) 406

CONFLICT parameter on SHRPROF

command 21

CONT system variable on tutorial

panels 302

continuation character for literals 115

continuation panel 303

control characters
in skeleton definition 319

control characters in skeleton

definition 321

CONTROL NONDISPL in batch

mode 38

CONTROL service 88

control variables
example 285

in panels 283

initialization 284

list of 283

when reset 284

conversion utility 91

CRASH 27

creating action bars 164

creating panel display dialog elements 5

CRP of top row displayed in most recent

table display, system variable 414

CSRGRP(x) keyword in panel)ATTR

section 184

CSRPOS (.CSRPOS) control variable 289

CUA guidelines, dot leaders 110

CUADYN 202

CUADYN keyword in panel)ATTR

section 184

cursor placement, default 291

cursor position
system variable 408

D
DANISH keyword on ISPSTART

command 11, 17

data records in skeleton definition 319

control characters 321

DATAMOD keyword in)ATTR section of

dynamic panels 176

date and time information (system

variables) 406

DBCS
batch mode 39

command and message fields 210

data validation 116

parameter on VER statement 270

replacement characters 198

specifying format 187

specifying search argument format for

table services 83

DBCS (continued)
system variable containing terminal

capability 411

variables
in messages and file

skeletons 152

on panel definitions 317, 345

verifying string length (VER

LEN) 274

DDL file name
system variable 407

DDLIST keyword in panel)ATTR

section 184

ddname of file tailoring temporary file,

system variable 409

debug tools 367

DEFAULT
attribute or body section

statement 173

skeleton control statement 323

default attribute characters 173

default keylist for DTL Help Panels 300

defining messages 307

delimiter
system variable 407

delimiters in verified variable 271

DELSOSI built-in function on assignment

statement 241

DEPTH keyword in panel)ATTR

section 187

determining table size 75

device name system variable for

PRINTG 414

diagnosing ISPF abends 386

dialog
beginning with menu or function 6,

10

call by using application master

menu 19

control 5

definition 1

development of 4

elements 1

example 75

function, languages used for

coding 2

initiation 22

organization 5

return codes 24

running of 10

scope 23

termination 24

variables 7

writing
using display services 43

using file-tailoring services 83

using miscellaneous services 88

using PDF services 86

using table services 71

using variable services 61

dialog elements
description 4, 5

test of 4

dialog function 1

creation of 4

description of 2

dialog, languages used for coding 2

dialog function (continued)
example 75

function pools 63

naming 12

scope 23

Dialog Tag Language (DTL) 91

dialog variables
format of 69

ISPPRXVP processor 259

processing with panel REXX 259

dialog variables, list of 397

directive lines, optional display 189

disability 417

display error processing in the batch

environment 39

display message variations 312

display services
DBCS-related variables 152, 317, 345

in batch mode 37

displaying a pop-up window 92

DO
file-tailoring control statement 324

DOT file-tailoring control statement 326

Drop-down List 102

DSNAME parameter on VER

statement 270

DSNAMEF parameter on VER

statement 270

DSNAMEFM parameter on VER

statement 270

DSNAMEPQ parameter on VER

statement 271

DSNAMEQ parameter on VER

statement 271

DUMP keyword on ENVIRON

command 385

dynamic area
character level attribute support 148

formatting panels 145

dynamic table expansion 47, 135

E
EBCDIC

parameter on VER statement 271

specifying format 187

EDIF service 87

EDIREC service 87

EDIT service 86

edit service panel definition, specifying

location of scroll field 108

edit service scroll amount, system

variable 413

EDREC service 86

elements of a dialog 1

ELSE file-tailoring control statement 327

ELSE statement in panel sections 246

ENBLDUMP parameter on ENVIRON

command 381

end of displayed data specification 134

END section of panel definition
definition 215

ENDDO file-tailoring control

statement 324

ENDDOT file-tailoring control

statement 326

Index 425

ENDREXX file-tailoring control

statement 328

ENDSEL file-tailoring control

statement 331

ENGLISH keyword on ISPSTART

command 11, 17

Enter Key, in GUI mode 103

entry point address on diagnostic

panel 386

ENUM parameter on VER

statement 271

ENVIRON system command 380

environment 1

environment description, system

variable 407

EQ operator on the IF statement 247

error conditions for panel user exit 255

ERROR keyword on ENVIRON

command 384

error message-id, system variable 415

error panel 39

error processing
SYSPRT file 23

TSO batch execution 37

when put into effect 23

error recovery panel at abend 387

error return codes from dialog to

invoking application 25

ESTAE restrictions 36

EXCLPROF
parameter on ISPSTART

command 16

EXCLPROF parameter 11

executable section of a dialog 223, 232,

233

executing APL2 functions 33

EXHELP 95, 297

exit data on panel user exit

parameter 254

EXIT keyword in)PROC section 118,

120, 122

EXIT statement
panel REXX 260

EXIT statements 244

exits, CLIST attention 30

EXPAND keyword in panel)BODY

section 209

expected-length operand (on VER

LEN) 275

explicit chain mode 121

EXTEND parameter
in)ATTR section 175, 180

in graphic areas 177

Extended Code Page Support
base code pages 353

CCSIDs supported 351

description 347

ISPF-provided translate tables 356

messages tagged 348

panels tagged 348

translate load modules 348

Z variables 347

Extended Code Page Translate Tables

Provided by ISPF 356

extended help 95, 297

extended highlighting availability, system

variable 411

extension table 67

extension variables 67, 72

clearing in model lines 139

F
FI: parameter for GUI mode 100

FIELD keyword
in panel)FIELD section 216

field section of panel definition
definition 215

field-level help 95, 222, 297

field-type specification in panel)ATTR

section 199

file tailoring temporary file name, system

variable 409

file-tailoring services
example 85

skeleton files 84

writing dialogs 83

file-tailoring skeleton
control statement considerations 322

data record considerations 84, 320

DBCS considerations 345

debugging 374

defining 319

definition 3

sample 345

trace command (ISPFTTRC) 374

FILEID parameter on VER

statement 273

fixed portion of a TBDISPL display 135

FORMAT keyword
in panel)ATTR section 175, 187

in panel)BODY section 209

formatting guidelines for panels 225

FRAME parameter on ISPSTART 15

FRENCH keyword on ISPSTART

command 11, 17

function commands, definition 138

Function key set displayed, system

variable 412

Function key settings, system

variables 412

Function keys, system variable containing

number of 412

function pool 62, 63

using variables to communicate

between functions 70

function, definition 1

G
GDDM

in batch environment 38

interface to 150

GDDM service 88

GE keyword
in panel)ATTR section 188

GE operator on the IF statement 247

GERMAN keyword on ISPSTART

command 11, 17

GETMSG service 89

GIF 225

GOTO statement in panel section 244,

246

graphic area, panel definition 177

graphical user interface
batch mode 40

Group Boxes 102

GRPBOX 205

GT operator on the IF statement 247

GUI in batch mode 40

GUI parameter on ISPSTART 11, 14, 99

GUISCRD 15

GUISCRD parameter on ISPSTART 11

GUISCRW 15

GUISCRW parameter on ISPSTART 11

H
help

extended 95, 297

field-level 95, 297

help for help 297

keys 95, 297

message 297, 298

panel 297, 298

reference phrase 96, 298

TUTOR command 298

tutorial 298

help for help command 297

help panel
See also tutorial

name associated with error

message 414

system variable containing name

associated with error message 415

with scrollable areas 169

help section of panel definition
definition 222

HELP system command
entry to tutorial 301

on ABEND panels 387

HEX parameter on VER statement 273

HEX primary command 219

HIGH parameter with INTENS

keyword 189

HILITE keyword in panel)ATTR

section 188

I
IDATE parameter on VER statement 273

IF file-tailoring control statement 327

IF statement
basic IF 247

with Boolean operators 249

with VER constructs 248

with VSYM built-in function 249

IM file-tailoring control statement 327

IMAGE keyword 225

Images, in a GUI display 103

IN parameter used with CAPS

keyword 181

INCLUDE parameter on VER

Statement 273

IND keyword
in panel)FIELD section 216

index page, specifying for tutorials 303

INDEX tutorial command 301

initialization of control variables 284

426 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

initialization section of panel definition
definition 223

requirements for table display 141

initiating dialog execution 22

INPUT parameter used with TYPE

keyword 199

INTENS keyword in panel)ATTR

section 175

interpreted REXX 253

invoking
authorized commands 28

authorized programs 28

authorized TSO commands 28

TSO commands 28

invoking a dialog
from a selection panel 18

from the ISPF master application

menu 19

the ISPSTART command 18

IP address 14

ISP@MSTR, ISPF Master Application

Menu 121

ISP@PRIM on the ISPF Primary Option

Menu 127

ISPCMDS system command table 2

ISPDPTRC (panel trace command) 367

ISPF
command 29

Common User Access support 91

default keylist 300

EDIF service 35

help panels 297

interface with APL2 35

overview 4

tutorial panels 297

variables 68

ISPF Client/Server Component
dialog developer’s details

action bars 101

APL/TEXT character sets 103

check boxes 102

closing a window 102

cursor placement 103

displaying application in GUI

mode 99

function keys 102

long messages 102

pull-down menus 101

short messages 102

title bars 101

Restrictions
3290 partition mode 104

character-level color, intensity, and

highlighting 103

cursor placement 103

field-level intensity and

highlighting 103

graphic areas 103

OUTLINE attribute 104

pop-up window and message

pop-up positioning 104

SKIP attribute 104

ISPF conversion utility 91

ISPF dialog variables
panel REXX 260

ISPF Services in Batch Mode 36

ISPFTTRC (file tailoring trace

command) 374

ISPPREP preprocessed panel routine
batch environment 39

error conditions 156

examples 156

restrictions 154

return codes 156

using 152

ISPPRXVP dialog variable processor 259

ISPREXPX 256

ISPSTART command
description 9, 10

example 10

syntax 10

TSO 29

ISPTTDEF, using to specify translate

tables 365

ISPTUTOR 301

ISRABEND debug tool 367

ISRCSECT debug tool 367

ISRFIND debug tool 367

ISRPOINT debug tool 367

ISRROUTE command 164

ISRTCB debug tool 367

ISRTEST debug tool 367

ISRVCALP panel REXX example 266

ITALIAN keyword on ISPSTART

command 11, 17

ITERATE file-tailoring control

statement 328

ITIME parameter on VER statement 274

J
JAPANESE keyword on ISPSTART

command 11, 17

JDATE parameter on VER statement 274

JSTD parameter on VER statement 274

JUST keyword in panel)ATTR

section 138, 175, 189

justifying a panel field 189

K
KANA keyword

extended code page support 350

on panel)BODY section 209, 361

Katakana
keyboard character translations 361

terminal displaying messages 309

key assignment 91

keyboard 417

keylist
application 91

system 91

keylist defaults for DTL Help Panels 300

KEYLIST parameter on)PANEL

statement 225

keylist utility 112

keys 300

keys help 95, 297

KEYS system command, batch

environment 39

KEYSHELP 95, 297

KOREAN keyword on ISPSTART

command 11, 17

L
LANG(APL) parameter

in panel)PROC section 118

on ISPSTART command 11

languages used for coding functions 2

last visible line function (LVLINE) 240

LCOL keyword
in panel)FIELD section 218

LE operator on the IF statement 247

leading blanks in verified variable 271

LEAVE file-tailoring control

statement 328

LEFT parameter used with JUST

keyword 189

LEN keyword
in panel)FIELD section 216

LEN keyword on VER statement 274

LENGTH built-in function on assignment

statement 240

LIBDEF service 89

library access services 87

light pen, using to select a field 180

LIND keyword
in panel)FIELD section 217

line display mode, automatic and

nonautomatic entry into line mode 12

list boxes 102

list data set in a batch environment 40

LIST parameter on VER statement 275

list section of panel definition
definition 223

LIST service 89

LISTBOX keyword in panel)ATTR

section 190

LISTV parameter on VER Statement 275

LISTVX parameter on VER

Statement 276

LISTX parameter on VER Statement 276

LMSG parameter on panel)BODY

section 211

loading a panel user exit routine 252

loading a REXX panel exit 253

log data set
batch messages 39

in batch environment 40

LOG service 89

logical screens
system variable 408

logical screens, maximum
system variable 408

LOGO parameter on ISPSTART

command 16

LOGOFF command 29

LOGON command 29

long error message text, system

variable 415

LookAt message retrieval tool xi

loops, avoiding in batch 40

LOW parameter used with INTENS

keyword 189

LT operator on the IF statement 247

LU name of TSO session, system

variable 411

Index 427

LVLINE built-in function on assignment

statement 240

M
master application menu

example of definition 121

example of display 19

member lists scroll position, system

variable 413

member lists, scrolling 413

menu
definition of primary option 120

entry to tutorial 301

example of a master application

menu 121

example of primary option 133

special definition requirements 116,

117

use of ZPARENT to set next

display 121

message alarm indicator 414

message definition
DBCS considerations 317, 345

description of 3

example of short and long 308

Katakana considerations 309

message ID 308

processing 307

syntax 308, 316

message field location 107

message fields in panel)BODY

section 209

message help 297, 298, 309

message ID on panel user exit

parameter 254

message library
description of 307

example 308

message retrieval tool, LookAt xi

message text
long error 415

short error 415

system variable containing 415

message-id, system variable containing

error 415

messages
display variations 312

in batch environment 39

miscellaneous services, used in writing

dialogs 88

MIX parameter on VER statement 276

mixed characters, specifying format 187

mnemonics, in a GUI session 102

MODE keyword 118, 119

model lines
clearing variables in 139

definition of 135

specified in a variable 140

model section of panel definition
definition 224

requirements for table display

panel 139

model sets
description of 135

example 45

modeless message pop-ups 314

module name on diagnostic panel 386

movable pop-ups
manual movement 94

WINDOW command 93

MSG=value parameter on assignment

statement 237

msgid keyword 308

N
NAME parameter on VER

statement 276

name-list parameter
on VSYM panel statement 283

named variables 256

NAMEF parameter on VER

statement 276

naming defined and implicit

variables 65

naming restrictions for dialog

functions 13

NB parameter on VER statement 269

NE operator on the IF statement 247

negative number indicators 271

NEST keyword 118

nested CLISTS, attention exits 31

NESTMACS keyword on ISPSTART

command 11

NEWAPPL, (application-id)

parameter 11, 118

NEWPOOL parameter in)PROC

section 118

NG operator on the IF statement 247

NL operator on the IF statement 247

NLS
common characters 347

GETMSG service 348

messages tagged with CCSID 313

TRANS service 348

NOCHECK parameter
example 119

in)PROC section 118

NOJUMP keyword in panel)ATTR

section 192

NOKANA keyword in message

definition 309

NOLOGO parameter on ISPSTART

command 17

NON parameter used with INTENS

keyword 189

NONBLANK parameter on VER

statement 269

NOP file-tailoring control statement 328

NOPROMPT parameter on SHRPROF

command 21

Notices 419

null system variable 407

NULLS parameter used with PAD

keyword 193

NUM parameter on VER statement 277

number of colors supported by the

terminal type, system variable 411

number of Function keys, system

variable 412

number of variables on panel user exit

parameter 255

numeric (extended) verification 271

numeric compare on IF statement 248

NUMERIC keyword in panel)ATTR

section 192

Numeric Lock feature (with NUMERIC

attribute keyword) 192

O
OFF parameter

with ATTN keyword 180

with CAPS keyword 181

with NOJUMP keyword 192

with NUMERIC keyword 193

with SKIP keyword 199

ON parameter
with ATTN keyword 180

with CAPS keyword 181

with NOJUMP keyword 192

with NUMERIC keyword 193

with SKIP keyword 199

ONEBYTE built-in function on

assignment statement 241

online tutorial 301

OPT system variable 117

OPT(option) parameter on ISPSTART

command 11

OUT parameter used with CAPS

keyword 181

OUTLINE keyword
in panel)ATTR section 173, 175, 193

in panel)BODY section 209, 213

OUTPUT parameter used with TYPE

keyword 199

P
PAD keyword in panel)ATTR

section 175, 193

PADC keyword in panel)ATTR

section 194

panel definition 106

)PNTS statement 228

attribute section
default characters 173

blanks 114

body section
sample 213

command field
description 107

specifying 209

comment statement 114

creation of 5

description 106, 107

design suggestions 109

dynamic areas 202

graphic areas 177

GUI considerations 139, 151

help and tutorial panels 301

initialization section
statement formats 235

line 1 content 107

line 2 content 108

line 3 content 108

location 107

menus 117

model section 139

428 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

panel definition (continued)
panel title, location 107

reinitialization section
statement formats 235

restrictions 113

sections 106

short message for TBDISPL

operations 108

size 112

special requirements 116

specifying a message field 211

split-screen consideration 109

syntax rules 113

table display 133

tutorial and help panels 301

using)PANEL 225

panel help 297, 298

panel name on panel user exit

parameter 254

PANEL parameter
in)PROC section 118

on ISPSTART command 11

panel redisplay 233

panel REXX 258

EXIT statement 260

ISPF dialog variables 260

ISRVCALP example panel 266

SOURCELINE function 260

panel section of panel definition
formatting panel 225

panel section on panel user exit

parameter 254

panel trace command (ISPDPTRC) 367

panel user exit routine
description 250

how to invoke 253

how to load 252

parameters passed 254

return codes 255

panels
debug/trace 367

preprocessed 152

vertically scrollable 113

PANEXIT statement 251

PARM
keyword

in)PROC section 118

on preprocessed panels 153

parameter on ISPSTART

command 11

parts of a dialog 1

PAS keyword in panel)ATTR

section 195

passing control from program-coded to

command-coded function 6

PDF command 29

PDF service
library access 87

writing dialogs 86

pending END request 135

pending scroll request 135

pending selected rows 136

percent (%) sign, beginning a command

procedure name with 12

PF key, system variable 408

PFK built-in function on assignment

statement 239

PGM keyword in)PROC section 118

PGM parameter on ISPSTART

command 11

PICT parameter on VER statement 277

PICTCN parameter on VER

statement 277

PNTS section of panel definition 228

Point-and-shoot section of panel

definition 228

pools, variable
application profile 62

function 62

shared 62

pop-up window
ADDPOP service 92

movable 93

processing considerations 151

size 209

PORTUGUESE keyword on ISPSTART

command 11, 17

POSITION, TBDISPL parameter 136

PQUERY
in batch environment 38

used with dynamic area 147

PQUERY service 89

prefix system variable 408

preprocessed panels
creating (ISPPREP) 152

definition 152

ISPPREP call 154

PARM keyword 153

SELECT service 153

Primary Option Menu 120

printer family type for PRINTG 414

processing section of panel definition
definition 232

requirements for table display 141

PROFILE parameter
on VGET panel statement 281

on VPUT panel statement 282

program status word on diagnostic

panel 386

program-name parameter
in panel)PROC section 118

on ISPSTART command 11

PROMPT parameter on SHRPROF

command 21

protecting table resources 73

PSW on diagnostic panel 386

pull-down choice, defining within the

)ABC section 162

pushbuttons 229

pushbuttons, large 229

Q
QUERY parameter on the ENVIRON

command 386

quotation mark, enclosing literals 115

quote mark, enclosing literals 115

R
radio buttons 103

RADIO keyword in panel)ATTR

section 196

RANGE parameter on VER

statement 278

RCOL keyword
in panel)FIELD section 218

read-only profile pool extension

variables 67

reason code on diagnostic panel 386

recovery termination manager at

abend 388

redisplay of a panel 233

reference phrase help 96, 298

REFRESH statement in panel

sections 257

register content at abend on diagnostic

panel 386

reinitialization section of panel definition
definition 233

requirements for table display 141

relational operators (on VER LEN) 275

removing a pop-up window 92

removing variables from the shared or

profile pool 67

REMPOP service 91, 92

REP keyword in panel)ATTR

section 175, 198

replacement characters 198

reset of control variables 284

RESET parameter on SHRPROF

command 21

RETRY parameter on SHRPROF

command 21

return codes
for panel user exit routine 255

from terminating dialog 24

return to function when scrolling 47

REVERSE parameter used with HILITE

keyword 188

reverse video, specifying 188

REXX edit macros, running

unnested 408

REXX file-tailoring control

statement 328

REXX panel exit
how to load 253

REXX panel statement 258

SOURCELINE function 260

REXX variables 260

RIGHT parameter used with JUST

keyword 189

RIND keyword
in panel)FIELD section 217

ROWS keyword on)MODEL statement in

table display panel 139

rows of a table, adding dynamically 47,

51

running a dialog 10

S
SCALE keyword

in panel)FIELD section 218

scope of a function 23

screen
logical number of 412

system variable containing 412

Index 429

screen depth and width available for use

by a dialog
system variable containing 413

screen depth and width available for use

by a dialog, system variable 413

screen depth on ISPSTART command for

batch 11

screen depth parameter for

ISPSTART 15

screen name
system variable 408

screen width for batch mode on

ISPSTART command 11

screen width parameter for

ISPSTART 15

scroll amount
field of a TBDISPL display, definition

of 136

for browse service, system variable

containing 413

for edit service, system variable

containing 413

for member lists, system variable

containing 413

location 107

maximum for member lists 413

minimum for member lists 413

number of lines or columns 413

system variable containing 413

system variable containing field

value 413

value default for dynamic areas and

table display 413

SCROLL keyword
in panel)FIELD section 218

SCROLL parameter in)ATTR

section 176

scroll position
for member lists, system variable

containing 413

scrollable areas
definition, section of panel 166

in the)BODY section 180

vertically scrollable panels 113

with help panel 169

scrollable fields, primary commands 219

scrollable portion of a TBDISPL

display 136

scrolling, expanding displayed table 48

SDWA reason code at abend 387

searching variable pools 62

SEL
file-tailoring control statement 331

system variable 117, 302

select field of a TBDISPL display 136

SELECT service 62

call 23

description 22

panel (VGET) 282

panel processing 118

passing control in a dialog 62

preprocessed panels 153

Selected Choice (SC) attribute 207

selected row, defined 136

selection panel, system variables 415

separator
system variable 407

separator (continued)
system variable containing 408, 409

separator bars 102

services
to dialogs 1

to interactive applications 1

services description, SELECT 22

SET file-tailoring control statement 332

SETF file-tailoring control statement 332

SFIHDR keyword on)MODEL statement

in table display panel 139

SGERMAN keyword on ISPSTART

command 11, 17

shadow variable 148

SHARED parameter
on VGET panel statement 280

on VPUT panel statement 282

shared pool 62

sharing variables among dialogs 66

shift-in character (DBCS) 187, 241

shift-out character (DBCS) 187, 241

short error message text, system

variable 415

short message syntax 309

shortcut keys 417

SHRPROF
parameter on ISPSTART

command 16

SHRPROF system command 20

SIND keyword
in panel)FIELD section 217

site command table prefix, system

variable 408

skeleton
description of 3

skeleton definition
)REXX statement 328

assigning a value to a variable 332

comment statement 322

control characters 319

control statements 319, 322

data records 319

defining 319

example 345

IF-THEN-ELSE statement 327

imbedding 327

imbedding blank lines 322

loop processing 328

null statement 328

SET with functions statement 332

specifying table processing 326

tab stop 333

SKIP
keyword in panel)ATTR section 175,

199

tutorial command 301

SMSG parameter on panel)BODY

section 211

SOURCELINE function, and panel

REXX 260

SPANISH keyword on ISPSTART

command 11, 17

specifying DBCS search argument

format 83

SPF command 29

SPLIT command, disabled in batch

environment 39

split-screen in effect, system

variable 413

SPLITV system command, disabled in

batch environment 39

stacked commands, graphics interface

mode restriction 151

START service 97

starting a dialog
methods 10

using the ISPSTART command 18

using the SELECT service 22

starting a GUI session
using ISPSTART 99

starting ISPF 9, 10

STDDATE parameter on VER

statement 278

STDTIME parameter on VER

statement 279

STEM variables 8

stepname of TSO logon, system

variable 408

storing variables from a panel in shared

and profile pools (VPUT) 282

string of variable values on panel user

exit parameter 255

substitution string, conditional 321

subtasking support 35

SYMDEF parameter
on VGET panel statement 281

SYMNAMES parameter
on VGET panel statement 281

syntax rules
message definition 308, 316

panel definition 113

skeleton definitions 319

System keylist 91

system symbolic variables 70

system variables
list of 405

used for communication between

dialogs and ISPF 415

Z 407

ZACCTNUM 407

ZAMT 413

ZAPLCNT 407

ZAPPLID 407

ZAPPTTL 407

ZASPECT 413

ZBDMAX 407

ZBDMXCNT 407

ZCFGCMPD 406

ZCFGCMPT 406

ZCFGKSRC 406

ZCFGLVL 406

ZCFGMOD 406

ZCMD 415

ZCOLORS 411

ZCONT 415

ZCS 407

ZCSDLL 407

ZCURFLD 415

ZCURINX 415

ZCURPOS 415

ZDATE 406

ZDATEF 406

ZDATEFD 406

ZDATESTD 406

430 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

system variables (continued)
ZDAY 406

ZDBCS 411

ZDECS 407

ZDEL 407

ZDEVNAM 414

ZENTKTXT 407

ZENVIR 407

ZERRALRM 414

ZERRHM 414

ZERRLM 415

ZERRMSG 415

ZERRSM 415

ZERRTYPE 415

ZERRWIND 415

ZEURO 407

ZFAMPRT 414

ZFKA 411

ZGE 149, 411

ZGUI 407

ZHILITE 411

ZHINDEX 415

ZHTOP 415

ZIND 415

ZIPADDR 411

ZIPPORT 411

ZISPFOS 407

ZISPFRC 407

ZJ4DATE 406

ZJDATE 406

ZKEYHELP 408

ZKEYS 412

ZKLAPPL 412

ZKLNAME 412

ZKLTYPE 412

ZKLUSE 412

ZLANG 408

ZLOGNAME 414

ZLOGO 408

ZLOGON 408

ZLSTLPP 414

ZLSTNAME 414

ZLSTNUML 414

ZLSTTRUN 414

ZLUNAME 411

ZMLPS 408

ZMONTH 406

ZNESTMAC 408

ZOS390RL 408

ZPANELID 408

ZPARENT 415

ZPF01-24 412

ZPFCTL 412

ZPFFMT 412

ZPFKEY 408

ZPFLxx 412

ZPFSET 412

ZPFSHOW 412

ZPLACE 408

ZPREFIX 408

ZPRIKEYS 412

ZPRIM 415

ZPROFAPP 408

ZRXRC 260

ZSCBR 413

ZSCED 413

ZSCML 413

system variables (continued)
ZSCRCUR 408

ZSCREEN 412

ZSCREENC 408

ZSCREEND 412

ZSCREENI 408

ZSCREENW 413

ZSCRMAX 408

ZSCRMAXD 413

ZSCRMAXW 413

ZSCRML 413

ZSCROLLA 413

ZSCROLLD 413

ZSCROLLN 413

ZSCTPRE2 408

ZSCTPRE3 408

ZSCTPREF 408

ZSCTSRCH 408

ZSEL 415

ZSEQ 408

ZSM 408

ZSPLIT 413

ZSTDYEAR 406

ZSYSICON 408

ZSYSID 409

ZSYSNODE 409

ZSYSPLEX 409

ZSYSPROC 409

ZTDADD 414

ZTDAMT 414

ZTDLROWS 414

ZTDLTOP 414

ZTDMARK 414

ZTDMSG 414

ZTDRET 414

ZTDROWS 414

ZTDSCRP 414

ZTDSELS 414

ZTDSIZE 414

ZTDSRID 414

ZTDTOP 414

ZTDVROWS 414

ZTEMPF 409

ZTEMPN 409

ZTERM 413

ZTERMCID 409

ZTERMCP 409

ZTERMCS 409

ZTHS 409

ZTIME 406

ZTIMEL 406

ZTS 409

ZTSICMD 409

ZTSSCMD 409

ZUCTPRE2 409

ZUCTPRE3 410

ZUCTPREF 409

ZUP 415

ZUSC 413

ZUSER 410

ZVERB 410

ZWINTTL 410

ZWSCDPG 410

ZWSCON 410

ZWSOPSYS 410

ZXSMAX 413

ZXSMIN 413

system variables (continued)
ZYEAR 406

SYSTSPRT file for error messages 37

T
tab stop in skeleton definition 333

tabbing
alternate 333

table
accessing data 72

adding rows dynamically 47

definition 3

dynamic expansion 135

temporary or permanent 71

when created or updated 3

table display (TBDISPL), terms related

to 133

table display output example 143, 145

table display panel definition
attribute section 138

body section 138

example 142

example of multiple model lines 144

initialization section 141

message location 108

model line 45, 133

model section 139

scroll field location 108

short message area content 108

using the TBDISPL service 133

table rows
number of selected upon return from

table display 414

number of system variable containing

upon return from table display 414

number of visible rows upon return

from table display 414

system variable containing 414

table services
determining table size 75

example 74, 75

protecting resources 73

row operation 73

using 71, 72

tags, creating dialog elements 91

task abend code on diagnostic panel 386

TB file-tailoring control statement 333

TBA file-tailoring control statement 333

TBDISPL series 136

TBDISPL service
description 142

dynamically building the table 48

terms related to 133

writing dialogs 43

TCP/IP 14

TCP/IP address
definition 99

terminal data in batch mode 38

terminal type
specifying ISPTTDEF 365

system variable containing 413

terminating
a dialog 24

ISPF 9, 10

TERMSTAT parameter on ENVIRON

command 385

Index 431

TERMTRAC parameter on ENVIRON

command 382

TEST
difference from TESTX 28

mode 27

parameter on ISPSTART

command 11

testing dialog elements 4

TESTX
difference from TEST 28

mode 27

parameter on ISPSTART

command 16

TEXT keyboard character

translations 361

TEXT parameter used with TYPE

keyword 199

time and date information (system

variables) 406

title displayed in window frame 407

TOC tutorial command 301

TOG statement 266

top-row-displayed indicator 50, 136, 414

trace
file-tailoring execution 374

panel execution 367

TRACE
difference from TEST and

TRACEX 28

mode 28

parameter on ISPSTART

command 11

TRACEX
difference from TEST and TRACE 28

mode 28

parameter on ISPSTART

command 16

trailing blanks in verified variable 271

TRANS built-in function on assignment

statement
description 237, 238

example 119, 239, 291

example, nested 237, 238

translate tables, specifying 365

translation
common characters 347

GETMSG service 348

messages tagged with CCSID 313

TRANS service 348

TRUNC built-in function on assignment

statement
description 236

example 119, 236, 239

example, nested 237, 238

truncation, system variable containing list

data set 414

TSO
batch environment 36

batch execution 36

command restrictions 29

invoking authorized commands 28

invoking commands 28

TSO command 29

TSO session LU name, system

variable 411

TSOEXEC interface 29

TUTOR command 298

tutorial 116

call of 301

commands 301

defining panels 301

description 298

ending of 302

entry to 301

sample hierarchy of panels 303

sample panel 304

specifying an index page 303

use 301

tutorial panels, system variables that

contain information about 415

TWOBYTE built-in function on

assignment statement 241

TYPE keyword in panel)ATTR

section 175

U
unavail specification in panel)ATTR

section 200

unavailable choices 102

underscore, specifying 188

UP tutorial scroll command 301

UPPER built-in function on assignment

statement 240

UPPERENG keyword on ISPSTART

command 11, 17

USCORE parameter used with HILITE

keyword 188

used for communication between dialogs

and ISPF 69

user exit for panel processing 250

USER parameter used with PAD

keyword 193

user-selection 137

userid, system variable 410

USERMOD parameter in)ATTR

section 176

V
validation of DBCS data 116

value from scroll amount field, system

variable 413

variable model lines 140

variable services
creating or deleting defined

variables 65

summary 71

writing dialogs 61

variables
assignment statement 235

COMPOUND 8

creating implicit 65

description of 7

dialog 62

dialog, format 69

in IF or ELSE statements 246

in message definition 316

in VER statements 268

maximum size 7

names too long for panel

definition 295

naming 7

variables (continued)
naming defined and implicit 65

on panels, restricted size 113

owned by ISPF 68

panel REXX 260

processing using panel user exit 252

read-only extension 67

removing from the shared or profile

pool 67

saving across ISPF sessions 66

sharing among dialogs 66

STEM 8

storing from a panel to shared and

profile pools (VPUT) 282

system variable charts 405

testing the value of 246

to function pool from shared or

profile pools (VGET) 280

value test during panel

processing 248

ZERRCSID 347

ZKEYHELP 95

ZTERMCID 347

ZTERMCP 347

ZTERMCS 347

Variables for ISPSTART parameters 11

VARS variable in table display

panel 141

VCOPY service 70

VDEFINE service
in panel user exit routine 252

writing dialogs 70

VDELETE service 70

VEDIT statement 267

VER statement in panel section
description 268

syntax 269

VERASE service 70

verifying variable content 269

VGET statement
in panel)INIT,)REINIT, or)PROC

section 280

on DISPLAY panel 280

on SELECT panel 282

syntax 280

using 70

VMASK service 70

VPUT statement
example 283

in panel)INIT,)REINIT, or)PROC

section 282

syntax 282

using 70

VREPLACE service 70

VRESET service 70

VSYM
statement 283

VSYM built-in function on assignment

statement
example, nested 237, 238

VSYM statement
example 283

syntax 283

432 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

W
WAIT parameter on SHRPROF

command 21

WIDTH keyword in panel)ATTR

section 200

WIDTH keyword in panel)BODY

section 209

WINDOW command 93

WINDOW keyword
defining pop-up windows 112

in panel)BODY section 209

window title variable 91, 92

workstation command 13

workstation command var 14

workstation IP address, system

variable 411

workstation IP port number, system

variable 411

writing dialogs
display services 43

file-tailoring services 83

miscellaneous services 88

PDF services 86

table services 71

variable services 61

WSCMD 13

WSCMD parameter on ISPSTART

command 11

WSCMDV 14

WSCMDV parameter on ISPSTART

command 11

Z
Z system variable 407

Z variables used for field name

place-holders 295

ZACCTNUM system variable 407

ZAMT system variable 413

ZAPLCNT system variable 407

ZAPPLID system variable 407

ZAPPTTL system variable 407

ZASPECT system variable 413

ZBDMAX system variable 407

and BDISPMAX keyword 40

ZBDMXCNT system variable 407

ZC system variable 317, 346

ZCFGCMPD system variable 406

ZCFGCMPT system variable 406

ZCFGKSRC system variable 406

ZCFGLVL system variable 406

ZCFGMOD system variable 406

ZCLRSFLD primary command 219

ZCMD 398

ZCMD system variable 415

example 119

on tutorial panels 302

processing
blank 120

invalid option 120

truncation 118

versus other names for command

field 108

ZCOLORS system variable 411

in batch mode 39

ZCONT system variable 303, 305, 415

ZCS system variable 407

ZCSDLL system variable 407

ZCUNIT 403

ZCURFLD
general description 228

ZCURFLD system variable 415

ZCURINX
general description 228

ZCURINX system variable 415

ZCURPOS
general description 228

ZCURPOS system variable 415

ZCUSIZE 403

ZDATE system variable 406

ZDATEF system variable 406

ZDATEFD system variable 406

ZDATESTD system variable 406

ZDAY system variable 406

ZDBCS system variable 411

in batch mode 39

ZDECS system variable 407

ZDEL system variable 407

ZDEVNAM system variable 414

ZDLBLKSZ 398

ZDLCATNM 398

ZDLCDATE 398

ZDLDEV 398

ZDLDSNTP 398

ZDLDSORG 398

ZDLEDATE 398

ZDLEXT 398

ZDLEXTX 398

ZDLLRECL 398

ZDLMIGR 398

ZDLMVOL 398

ZDLOVF 398

ZDLRDATE 398

ZDLRECFM 398

ZDLSIZE 398

ZDLSIZEX 398

ZDLSPACU 398

ZDLUSED 398

ZDLVOL 398

ZDSN 398

ZDST 398

ZE system variable 317, 346

ZEDBDSN 398

ZEDILMSG 398

ZEDISMSG 398

ZEDMSGNO 398

ZEDROW 399

ZEDSAVE 399

ZEDTDSN 399

ZEDTMCMD 399

ZEDTMEM 399

ZEDTRD 399

ZEDUSER 399

ZEIBSDN 399

ZEIROW 399

ZEITDSN 399

ZEIUSER 399

ZENVIR system variable 36, 407

ZERRALRM 399

ZERRALRM system variable 414

ZERRHM 399

ZERRHM system variable 414

ZERRLM 399

ZERRLM system variable 415

ZERRMSG 399

ZERRMSG system variable 415

for panel user exit messages 255

ZERRSM 399

ZERRSM system variable 415

ZERRTYPE system variable 415

ZERRWIND system variable 415

ZEURO system variable 407

ZEXPAND primary command 219

ZFAMPRT system variable 414

ZFKA system variable 411

ZGE system variable 149, 411

ZGRPLVL 399

ZGRPNME 399

ZGUI system variable 407

ZHILITE system variable 411

in batch mode 39

ZHINDEX system variable 415

example 127

specifying top indexed panel 302

ZHTOP system variable 415

example 127

specifying top tutorial panel 302

ZICFPRT 403

ZIND system variable 415

using on tutorial panels 303

ZIPADDR system variable 411

ZIPPORT system variable 411

ZISPFOS system variable 407

ZISPFRC system variable
description 24

example of using 26

return codes 407

ZJ4DATE system variable 406

ZJDATE system variable 406

ZKEYHELP system variable 95, 408

ZKEYS system variable 412

ZKLAPPL system variable 412

ZKLNAME system variable 412

ZKLTYPE system variable 412

ZKLUSE system variable 412

ZLAC 399

ZLALIAS 399

ZLAMODE 399

ZLANG system variable 408

ZLATTR 400

ZLC4DATE 400

ZLCDATE 400

ZLCNORC 400

ZLINORC 400

ZLLIB 400

ZLM4DATE 400

ZLMDATE 400

ZLMEMBER 400

ZLMNORC 398, 400

ZLMOD 400, 401

ZLMSEC 401

ZLMTIME 400, 402

ZLOGNAME system variable 414

ZLOGO system variable 408

ZLOGON system variable 408

ZLPDSUDA 401

ZLRMODE 401

ZLSIZE 401

ZLSSI 401

ZLSTLPP system variable 414

Index 433

ZLSTNAME system variable 414

ZLSTNUML system variable 414

ZLSTTRUN system variable 414

ZLTTR 401

ZLUNAME system variable 411

ZLUSER 401

ZLVERS 401

ZMLCOLS 401

ZMLCR 401

ZMLPS system variable 408

ZMLTR 401

ZMONTH system variable 406

ZMSRTFLD 401

ZNESTMAC system variable 408

ZPARENT system variable 121, 415

ZPDFREL 403

ZPF01-24 system variables 412

ZPFCTL system variable 412

ZPFFMT system variable 412

ZPFKEY system variable 408

ZPFSET system variable 412

ZPFSHOW system variable 412

ZPLACE system variable 408

ZPREFIX system variable 408

ZPRIKEYS system variable 412

ZPRIM system variable 415

example 120, 127

ignored in explicit chain mode 121

using 121

ZPROFAPP system variable 408

ZRXMSG system variable 260

ZRXMSGsystem variables
ZRXMSG 260

ZRXRC system variable 260

ZSCBR system variable 413

ZSCED system variable 413

ZSCLM 401

ZSCML system variable 413

ZSCRCUR system variable 408

ZSCREEN system variable 412

ZSCREENC system variable 408

ZSCREEND system variable 412, 413

in batch environment 38

ZSCREENI system variable 408

ZSCREENW system variable 413

in batch environment 38

ZSCRMAX system variable 408

ZSCRMAXD system variable 413

in batch environment 38

panel definition 112

ZSCRMAXW system variable 413

in batch environment 38

panel definition 112

ZSCRML system variable 413

ZSCROLLA system variable 139, 413

ZSCROLLD system variable 138, 413

ZSCROLLN system variable 139, 413

ZSCTPRE2 system variable 408

ZSCTPRE3 system variable 408

ZSCTPREF system variable 408

ZSCTSRCH system variable 408

ZSEL system variable 415

contains result of truncating

ZCMD 117

example 119

on menus 117

on tutorial panels 302

ZSEL system variable (continued)
parameters and keywords used

with 118

restriction for 302

ZSEQ system variable 408

ZSESS 403

ZSM system variable 408

ZSPLIT system variable 413

ZSTDYEAR system variable 406

ZSWIND 403

ZSYSICON system variable 408

ZSYSID system variable 409

ZSYSNODE system variable 409

ZSYSPLEX system variable 409

ZSYSPROC system variable 409

ZTDADD function variable
definition of 47

using 49

ZTDADD system variable 414

ZTDAMT function variable
definition of 47

using 49

ZTDAMT system variable 414

ZTDLROWS function variable
definition of 48

using 50

ZTDLROWS system variable 414

ZTDLTOP function variable
definition of 48

using 48, 50

ZTDLTOP system variable 414

ZTDMARK system variable 134, 414

ZTDMSG system variable 414

ZTDRET function variable
definition of 47

using 47

ZTDRET system variable 414

ZTDROWS system variable 414

ZTDSCRP function variable
definition of 47

using 49

ZTDSCRP system variable 414

ZTDSELS system variable 141, 414

description 46

example 46

ZTDSIZE function variable
definition of 47

using 50

ZTDSIZE system variable 414

ZTDSRID function variable
definition of 47

using 49

ZTDSRID system variable 414

ZTDTOP system variable 414

ZTDVROWS system variable 414

ZTEMPF system variable 409

ZTEMPN system variable 409

ZTERM system variable 413

ZTERM, mapped to APL2 terminals 32

ZTERMCID system variable 409

ZTERMCP system variable 409

ZTERMCS system variable 409

ZTHS system variable 409

ZTIME system variable 406

ZTIMEL system variable 406

ZTS system variable 409

ZTSICMD system variable 409

ZTSSCMD system variable 409

ZUCTPRE2 system variable 409

ZUCTPRE3 system variable 410

ZUCTPREF system variable 409

ZUP system variable 415

on tutorial panels 302

ZUSC system variable 413

ZUSER system variable 410

ZUSERMAC 402

ZVERB system variable 139, 410

ZWINTTL 92

ZWINTTL system variable 410

ZWSCDPG system variable 410

ZWSCON system variable 410

ZWSOPSYS system variable 410

ZXSMAX system variable 413

ZXSMIN system variable 413

ZYEAR system variable 406

434 z/OS V1R9.0 ISPF Dialog Developer’s Guide and Reference

Readers’ Comments — We’d Like to Hear from You

Interactive System Productivity Facility (ISPF)

Dialog Developer’s Guide and Reference

z/OS Version 1 Release 9.0

 Publication No. SC34-4821-06

 Overall, how satisfied are you with the information in this book?

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall satisfaction h h h h h

 How satisfied are you that the information in this book is:

 Very Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

 Please tell us how we can improve this book:

 Thank you for your responses. May we contact you? h Yes h No

 When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

 Name

Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
 SC34-4821-06

SC34-4821-06

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Reader Comments

DTX/E269

555 Bailey Avenue

San Jose, CA

U.S.A. 95141-9989

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

File Number: S370/4300-39

Program Number: 5694-A01

Printed in USA

SC34-4821-06

	Contents
	Figures
	Preface
	About this document
	Who should use this document
	What is in this document?
	Notation conventions
	Using LookAt to look up message explanations
	Using IBM Health Checker for z/OS

	Summary of changes
	Product function changes for z/OS V1R9.0 ISPF
	ISPF product changes
	ISPF Dialog Manager component changes
	ISPF PDF component changes
	ISPF SCLM component changes
	ISPF Client/Server component changes
	Migration considerations

	Changes to this document for z/OS V1R9.0 ISPF

	What's in the z/OS V1R9.0 ISPF library?
	Chapter 1. Introduction to ISPF
	What is ISPF?
	What is a dialog?
	Functions
	Variables
	Command tables
	Panel definitions
	Message definitions
	File-tailoring skeletons
	Tables

	What does a dialog do?
	Developing a dialog
	How dialog elements interact
	Dialog variables

	Chapter 2. Controlling ISPF sessions
	Dialog control and data flow
	Processing a dialog
	Starting a dialog
	Syntax for issuing the ISPSTART command
	Parameters

	Using the ISPSTART command
	Invoking a dialog from a selection panel
	Invoking a dialog from a master application menu

	Controlling ISPF sessions
	Using the SHRPROF system command
	SHRPROF command syntax and parameter descriptions

	What the SELECT service does
	Invoking the SELECT service
	Terminating a dialog
	Return Codes from Terminating Dialogs
	Return Codes from Termination Dialogs

	An example using the ZISPFRC return code

	ISPF test and trace modes
	Test modes
	ISPF trace modes

	Invoking authorized programs
	Invoking TSO commands
	Compiled REXX requirements
	CLIST requirements
	Attention exits
	Restrictions on using attention exits from CLISTs
	Examples of CLIST attention exit process flow

	Using APL2
	Invoking APL2
	Executing APL2 functions
	Invoking ISPF dialog services in the APL2 environment
	APL2 workspace as the ISPF function pool
	Interface between ISPF and APL2

	Subtasking support
	ESTAE restrictions
	ISPF services in batch mode
	Command processors in the TSO batch environment
	Sample batch job
	Processing errors

	Batch display facility for background panel processing
	Supplying input in lieu of interactive users
	Supplying batch terminal characteristics
	Message processing in the batch environment
	Command processing in the batch environment
	Display error processing in the batch environment
	How ISPF handles log and list data sets in the batch environment
	Avoiding panel loop conditions in the batch environment

	ISPF graphical user interface in batch mode
	Restrictions
	Example JCL: invoking client/server in batch mode

	Chapter 3. Introduction to writing dialogs
	Using the display services
	Example: creating a display with TBDISPL
	Processing selected rows
	Adding table rows dynamically during table display scrolling
	System variables are the ISPF-function interface
	Using variable ZTDRET
	Using variable ZTDADD
	Using variable ZTDAMT
	Using variables ZTDSCRP and ZTDSRID
	Using variable ZTDSIZE
	Using variables ZTDLTOP and ZTDLROWS

	Example: dynamic table expansion

	Using the variable services
	Searching variable pools
	SELECT service and variable access
	Function pools and dialog functions
	Command procedures, program functions, and function pools
	Use a variable service to create or delete defined variables
	Creating implicit variables
	Naming defined and implicit variables
	Sharing variables among dialogs
	Saving variables across ISPF sessions
	Removing variables from the shared or profile pool
	Read-only profile pool extension variables
	Variables owned by ISPF
	Variable formats
	System variables communicate between dialogs and ISPF
	Using VDEFINE, VDELETE, VRESET, VCOPY, VMASK, and VREPLACE
	Using the VGET, VPUT, and VERASE services
	Summary of variable services

	Using the table services
	Where tables reside
	Accessing data
	Services that affect an entire table
	Services that affect table rows
	Protecting table resources
	Example: create and update a simple table
	Determining table size
	Example: function using the DISPLAY, TBGET, and TBADD services
	Command procedure function
	Description of function steps

	Specifying dbcs search argument format for table services

	Using the file-tailoring services
	Skeleton files
	Example of a skeleton file

	Example of using file-tailoring services

	Using the PDF services
	BROWSE, EDIT, and EDREC
	BRIF, EDIF, and EDIREC
	Library access services

	Using the miscellaneous services
	CONTROL service
	GDDM services (GRINIT, GRTERM, and GRERROR)
	GETMSG service
	LIBDEF service
	LIST service
	LOG Service
	PQUERY Service

	Chapter 4. Common User Access (CUA) guidelines
	Using the dialog tag language to define dialog elements
	Keylists
	Action bars and pull-downs
	Pop-up windows
	Movable pop-ups
	WINDOW command
	Manual movement
	Pop-up movement considerations

	Field-level help
	Extended help
	Keys help
	Reference phrase help
	START service

	Chapter 5. Graphical User Interface (GUI) guidelines
	How to display an application in GUI mode
	Other considerations
	Some general GUI restrictions

	Chapter 6. Panel definition statement guide
	Introduction to panel definition sections
	Guidelines for formatting panels
	Requirements for specifying message and command line placement
	Additional L/title>
	Example of a CUA panel definition

	Factors that affect a panel's size
	Vertically scrollable panels

	Syntax rules and restrictions for panel definition
	Using blanks and comments
	Formatting items in lists
	Using variables and literal expressions in text fields
	Validating DBCS strings

	Special requirements for defining certain panels
	Defining menus
	NOCHECK keyword
	MODE keyword
	EXIT keyword
	Blank or invalid options (‘’ or *,‘?’)
	Defining primary option menus
	Specifying the next menu to display
	Example of a master application menu
	Example of a primary option menu

	Defining table display panels
	Table display vocabulary
	Requirements for attribute section
	Requirements for body section
	Requirements for model section
	Requirements for initialization section
	Requirements for reinitialization section
	Requirements for processing section
	Using control variables
	Processing panels by using the TBDISPL service

	Formatting panels that contain dynamic areas
	Panel processing considerations
	Character-level attribute support for dynamic areas
	Specifying character attributes in a dynamic area
	Conflict resolution between attributes

	Formatting panels that contain a graphic area
	Graphics panel processing considerations

	Using DBCS-related variables in panels

	Using preprocessed panels
	Restrictions for using ISPPREP
	Using ISPPREP with the SELECT service
	Examples of using ISPPREP

	Handling error conditions and return codes

	Chapter 7. Panel definition statement reference
	Defining panel sections
	Defining the action bar choice section
	Specifying action bar choices in panel)BODY section
	Defining pull-down choices within the)ABC section

	Defining the action bar choice initialization section
	Defining the action bar choice processing section
	Defining the area section
	Panel definition considerations
	Help panels
	Panel processing
	Scrollable area examples

	Defining the attribute section
	Using default attribute characters
	Formatting attribute section statements
	Basic attribute types
	Specifying dynamic areas
	CUA panel-element types
	Other attribute types
	Relationship to Control variables .ATTR and .ATTRCHAR

	Defining the body section
	A sample panel body section

	Defining the CCSID section
	Defining the END section
	Defining the FIELD section
	Primary commands for scrollable fields
	Example
	Panel definition considerations

	Defining the HELP section
	Specifying the value for the field-name and help-panel-name

	Defining the initialization section
	Defining the LIST section
	Defining the model section
	Defining the panel section
	Keylist variables
	CUA display characteristics
	Command lines and long messages
	Keylist building and display
	Undefined or null function keys
	CANCEL and EXIT execution
	Setting system control variables

	Defining the point-and-shoot section
	GUI mode

	Defining the processing section
	Defining the reinitialization section

	Formatting panel definition statements
	The assignment statement
	The TRUNC built-in function
	The TRANS built-in function
	The PFK built-in function
	The LENGTH built-in function
	The UPPER built-in function
	The LVLINE built-in function
	The ADDSOSI and DELSOSI built-in functions
	The ONEBYTE and TWOBYTE built-in functions
	The VSYM built-in function

	The ELSE statement
	EXIT and GOTO statements
	EXIT statement
	GOTO statement

	The IF statement
	Basic IF value testing
	IF statement with VER constructs
	IF statement with VSYM built-in function
	IF statement and boolean operators

	The PANEXIT statement
	How to LOAD the panel user exit routine
	How to LOAD a REXX panel exit
	Invoking the panel user exit routine
	Parameters passed from ISPF to the panel user exit routine
	Return codes and error processing
	Using ISPREXPX to read and modify parameters

	The REFRESH statement
	The *REXX statement
	Processing ISPF dialog variables with panel REXX
	Return codes and error processing
	An example of using panel REXX

	The TOG statement
	The VEDIT statement
	The VER statement
	The VGET statement
	DISPLAY service panel
	SELECT service panel

	The VPUT statement
	The VSYM statement

	Using ISPF control variables
	.ALARM
	.ATTR and .ATTRCHAR
	.ATTR
	.ATTRCHAR
	Using .ATTR and .ATTRCHAR with table display panels
	Things to remember when using attribute override control variables

	.AUTOSEL
	.CSRPOS
	.CSRROW
	.CURSOR
	.HELP
	.HHELP
	.MSG
	.NRET
	.PFKEY
	.RESP
	.TRAIL
	.ZVARS
	Using Z variables as field name place-holders

	Chapter 8. ISPF help and tutorial panels
	Processing help
	Help requests from an application panel
	Keys help request from an application panel
	Extended help request from an application panel

	Help available from a help panel
	Ending help
	ISPF default keylist for help panels

	The ISPF tutorial panels

	Chapter 9. Defining messages
	How to define a message
	Message display variations
	Messages tagged with CCSID
	Modeless message pop-ups
	Message pop-up text formatting
	English rules for message text formatting
	Asian rules for message text formatting
	Substitutable parameters in messages

	Syntax rules for consistent message definition
	DBCS-related variables in messages

	Chapter 10. Defining file-tailoring skeletons
	Control characters
	Considerations for data records
	Control characters for data records

	Considerations for control statements
	Control statements
	Built-in functions
	&EVAL()
	&LEFT()
	&LENGTH()
	&RIGHT()
	&STR()
	&STRIP()
	&SUBSTR()
	&VSYM()
	&SYMDEF()

	Sample skeleton file
	DBCS-related variables in file skeletons

	Chapter 11. Extended code page support
	Translating common characters
	Z variables
	Panels tagged with CCSID
	Messages tagged with CCSID

	GETMSG service
	TRANS service
	ISPccsid translate load modules
	ISPccsid translate load module generation macro
	ISPCCSID macro
	Description of parameters
	ISPccsid translate load module definition examples

	KANA and NOKANA keywords
	Character translation

	Supported CCSIDs
	Base code pages for terminals
	Adding translate tables for extended code page support
	Base CCSIDs
	Extended code page translate tables provided by ISPF
	Example of user-modifiable ISPF translate table

	Appendix A. Character translations for APL, TEXT, and Katakana
	Appendix B. ISPTTDEF specify translate table set
	Appendix C. Diagnostic Tools and Information
	ISPF debug tools
	Panel trace command (ISPDPTRC)
	Trace format
	Panel trace header
	Panel display
	Panel processing trace

	File tailoring trace command (ISPFTTRC)
	Trace format
	File tailoring trace header
	File tailoring processing trace

	Diagnostic information
	Using the ENVIRON system command
	ENVIRON command syntax and parameter descriptions
	Abend panels provide diagnostic information
	ISPF statistics entry in a PDS directory

	Common problems using ISPF
	Messages
	Unexpected output

	Abend codes and information
	Terminal I/O error codes
	Register linkage conventions
	Obtaining message IDs

	Appendix D. Dialog variables
	PDF non-modifiable variables

	Appendix E. System variables
	Configuration utility
	Time and date
	General
	ZSCRNAME examples
	Example 1
	Example 2
	Example 3

	Terminal and function keys
	Scrolling
	PRINTG command
	Table display service
	LIST service
	LOG and LIST data sets
	Dialog error
	Tutorial panels
	Selection panels
	DTL panels or panels containing a)PANEL section

	Appendix F. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	z/OS information

	Notices
	Programming Interface Information
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

